This documents assumes that you are familiar with the definitions involved.
Please do notify me if there’s any logical mistakes or unclear portions.

Theorem 1. For o(g) < 00, o(g) is the smallest positive integer k with gF = 1.
Furthermore,

7" =1 = o(g)lm W
¢"=g" < m=n (mod olg)) @
ofghy = —29) 3)

- ged(o(g)), d)
We note that o(g) = |{g" | n € Z} | is our definition.

Proof. Consider the list of powers S = {g, g% ¢, ...} there must be repetitions,
otherwise 0(g) = co. This means that Ja,b € Z*,a < b s.t. g% = ¢g° implying
1 = ¢* % so Im with ¢™ = 1. Let k be the smallest such integer now that we
know it exists.

We first my show inclusion. Consider T = {1,g, e ,gk_l}, it is trivial that
T € S. For the other direction, let ¢g? be any element in S. We apply the
division algorithm to see that d =t -k +r with 0 <r < k.

gd _ gtk+7" — (gk)th _ gT cT

Thus we have equality of sets.

Now we have o(g) < k. To tie it all up, we need to show that the set
{Lg,...,gk_l} are all distinct. This is trivial as if not then ¢ = ¢° will
indicate that our choice of k is contradicted.

Finally, for the three corollaries, we have the following

1. Suppose k|m, m = tk. Then g™ = gt¥ = 1.

Now for the other direction, let ¢ = 1,m = tk + r with the division
algorithm. Then ¢***" = (1)g” = 1 implies that 7 = 0 and we have
divisibility.

2. Trivial from the above techniques.

3. Sayo(g) = k,ged (k,d) =t = Fk1,dy s.t. k =tky,d = tdy, ged (ky,dy) =
1. We know that by definition that o(g?) is the smallest positive integer,
say [, such that (g?)! = 1.

d

() =1 <= g% =1 < o(g)|dl < k|dl (4)
< tk‘lltdll (5)
<~ kil|dy! (6)
<~ k|l (7)

where the last step comes from (k1,d;) = 1. Hence the smallest number [
is k1, which is exactly what we want if we sub it all back in.



Theorem 2. Subgroups of cyclic group are cyclic.
Proof. Assume G = (g), and H < G. There are two cases:
1. H = {1}, trivial.

2. |H| >1,s03¢g™ € H,m € Z". Let k be the smallest positive integer with
g* € H, and claim H = (g*).

For (g*) C H, we have this almost trivially by definition of ¢g* and prop-
erties of subgroups. On the other hand to show the other inclusion, we
know Vz € H,x € G = z = ¢g%. Now perform division with remainder,

d=tk+r

Notice that g" = g9~ * = g?(¢*)~t = x(¢*)~t, with both terms in H, so
g" € H. But since r is a remainder, we know 0 < r < k — 1...but we
know k is the minimal g¥ € H! Hence r = 0.

Finally,
z=(¢""e(¢g") = H< (" (8)

and we are done.

Theorem 3. Cosets properties:

Hg| = |H] (9)
Hg=H < g€ H (10)
Hxr=Hy orHtNHy=2 (11)
Hr=Hy = xy '€ H (12)

Proof. 1. By construction as the map is H — Hg with elements h — hg
which is bijective.

2. See proof of 4, with x = g,y = 1.

3. Assume Hx N Hy # @, then Jz in the intersection. We know z = hyx =
hoy for some hq, ho € H. Then there exists an element h such that

hx = hhy hix = hhy'z = hhi‘hoy € Hy (13)
so Hx C Hy. Similar proof for other direction, then they are equal.

4. Suppose Hx = Hy, meaning that x € Hx by definition so x € Hy —
x = hy,h € H also by number 3. Then zy~! =h € H.

For the other direction, suppose zy~! € H, then xy~'y € Hy meaning
that x € Hy. Similarly we have x € Hx so that Hx and Hy are not
disjoint. Now use point 3.

O



Theorem 4. Show that conjugacy relation is an equivalence relation and |Ce(g)||€,| =

G|
Proof. First, for the equivalence relation on G:
e Reflexive: i~lgi=g
e Symmetric: if z71gx = f, then (m_l)_l frl=g.

e Transitive: if 27 gz = f,y~ fy = h, then (xy)~tg(zy) = h as (zy)~! =

y~ el
Next, we want to show the relationship on conjugacy classes and centralizers.
From Lagrange, we know that |G : H||H| = |G|, so we can sort of match it up

such that Cg(g) is the subgroup and the conjugacy classes are like the cosets.
Hence, if we show that |G : Cq(g) = ||, we are done.
Consider a(x) : Cg(g) — €, with Cg(g) - — x~ gz. Then « is well defined

if:
Calg)z = Calg)y (14)
zy~! € Calg) (15)
zy~lg=glxy™") (16)
ylgy=a""gx (17)
a(r) = a(y) (18)
Since each of those lines are iff implications, the reverse will show 1 to 1. Also,
« is onto by construction, hence « is bijection and we are done. O

Theorem 5. Cauchy’s theorem: let p prime, and if p | |G|, then 3g € G with
o(g) = p-
Proof. Consider the set T = {(g1,92,.--,9p) | 9192 - .. gp = 1} by choosing arbi-
trary p — 1 elements then fixing the g,. Hence we have |T| = |G|P~!.

Leta:T —T,(g1,---,9p) = (92,93, -- -+ 9p,g1). We note that (gags...gp)01 =
91 1g1 =1, hence it’s a valid mapping and one can also verify it’s bijective.

So « is a permutation on 7', and part of the symmetric group « € S,. More
importantly, a? = I, so o(a)|p meaning that o(a) can be either 1 or p. Then we
can rewrite

T = {elements in a 1-cycle U elements in a p-cycle} (19)
Let’s count this smartly in two ways,
[T =GP =+ op

where r is the number of 1 cycle, and s be the number of orbits with p elements.
Since we know p | |G|, we should be able to divide by p on both sides, meaning
that r is a multiple of p. It cannot be zero, as the trivial 1 is in it, then that
means there exists at least p elements (we only need 2 though!) of the 1 cycle.
Since the one cycle looks like g1 = g2 = -+ = gp, we are done as that means

glgl...glz(gl)pzl. D



Theorem 6. If M|\N ISG,MNN={1},M-N =G, then G= M x N.
We first need a lemma.

Lemma 1. If M,N QG,M NN = {1}, then mn = nm for all elements.

1 1

Proof. Consider m™ n~"mn = 1 where the first three and the 2nd three are
considered in different ways. Recall that since they are normal subgroups, con-
jugation doesn’t affect them, hence the first 3 can be considered in IV while the
2nd three is in M. Hence we have mn = nm. O

Proof. Consider « : M x N — G,(m,n) — mn. We wish to show it is a
homomorphism.

It is onto by the M - N = G condition.

It is one-to-one as

a(my,ny) = a(my, ny) (20)
ming = mong (21)
mz_lml = n2n1_1 = {1} (22)

The last line comes from the fact that the left side is in M, the right side is in
N and their intersection is only 1. Hence mo = my,no = n;.
Finally,

a ((m1, 1) (ma,n2)) = a(my.ng)a (ma, o) (23)
a ((myme,ning)) < (24)
mimaoning = M1N1M2N2 (25)

man1 = n1ms (26)

and the last line uses our lemma. Now « is an isomorphism and we are done. [J

Theorem 7. Given a mapping ¢ : R — T that the image is a sub-ring of T,
and the kernel is an ideal in R. Also show the 1st isomorphism theorem:

R/ ker(¢) = 3(¢) (27)

Proof. We first show that image of homomorphism is a subring. It is easy to
show that it’s non-empty by construction, and the subtraction/multiplication
condition comes naturally. For the kernel, the fact that it’s a subring is also
easy, and the ideal test is also fairly simple.

The non-trivial part is the isomorphism theorem. We consider the map
a : R/ker(¢) — (@) with the following operation ker (¢) + z — ¢(z). Our
notation of ker(¢) 4+ x is the congruence classes modulo the kernel.



We show it is well defined, if z & y:

x=y (mod ker(¢))
)

y —x € ker(¢
ply—z)=0

o(y) — d(x) =0
o(y) =

) = ¢(x)
) = a(z)

alx
Since it is iff statements, the backwards way shows one-to-one. Furthermore, o

is onto by construction due to properties of image. We are now done after we
prove the homomorphism properties, which is quite easy. O

aly

Theorem 8. Prove that if R is a simple commutative ring, then it is either a
field or a zero ring.

Proof. Assume that R is a commutative, simple ring. We have two cases based
on the existence of zero divisors:

1. If 3a,b # 0 with ab = 0. We consider the set N(b) = {x € R | zb =0} JR.
We know it is non-empty as 0 € N(b), and one can easily prove that this
is indeed an ideal.

Furthermore, we actually know that a € N(b) also, and since R is simple,
N (b) = R by definition. Hence, zb=0,Yz € F = R-b=0

Next consider N = {y € R | Ry = 0} < R. It is again non-empty as 0 is in
it, and again ideal is left as an trivial exercise. From the characterization

of b above, we know that b € N also, proving again that N = R by
definition of simple.

Hence this means that R is a zero ring.

As an aside, since the multiplication operation is without information, we
know the addition subgroup is an ideal (doesn’t contradictions simplicity
as it’s all the elements). Hence there’s a prime number of elements in R,
or simply R = {0}.

2. Assume R has no zero divisors, and is non-empty. Consider R, = {ra | r € R}<
R. It’s non-empty by construction, and ideal properties comes almost triv-
ially. Once again, we then know that R, = R by simple property.

Now as we know that R, = R,a € R, hence there must be an element e
such that a = ea! For any other element b, we have

ba = bea
ba — bea =0
(b—be)a=0 = b—be=0

so e is our fixed identity as R is commutative.



Finally, for any = # 0, we can have the same ideal as described above
of {0} # R, = R. And now with e € R identity in our pocket, we can
conclude there exists an element y such that e = yz, and again we can use
commutative property to have xy = yx = e.

Now R is a field.
O

Theorem 9. Prime implies irreducibility. Furthermore, in a PID irreducibility
implies prime.

Proof. This is in an integral domain. Assume that p is prime, and let d|p so
Jx, dx = p.

Now, we know p|dx and p is prime, hence either p|d or p|z. The latter
condition signifies that Jy s.t.

py=z (28)
dr =dpy =p = p(dy — 1) =0 (29)

hence by non-zero definition, dy =1 = d ~ 1.

Now, for the PID statement. Assume that R is a PID, with ¢ € R irreducible
and glab. We need tho show that g|a or g|b.

Consider ged(g, a), by lemma on existence of ged in PIDs, we know 3d, ged(g, a) =
d = d ~ ged(q,a). Now d|g,d|a, and ¢ is irreducible so either d is unit or
d~q.

If d ~ ¢, then g|d and d|a and we are done by transitivity.

If d ~ 1 (unit), we consider d = sq + ta for some s,t (exists due to ged
operator). Furthermore, we note that there is a f, fd = 1. Hence

1= fd= fsq+ fta (30)
b= fsqb+ ftab (31)

by commutative property. Note that ¢ divides both terms as ¢ appears in the
first one and g¢|ab is one of our assumptions, so it divides b, g|b. O

Theorem 10. ED — PID

Proof. Let R be an ED, and J < R. If J = {0}, then J = (0) is principal, so
assume J # {0}. We choose 0 # d € J with the smallest possible N(d).

Claim that J = (d). Sinced € J = rd € J,¥r € R so (d) C J.

Conversely, Vx € J,3dq,7 € R such that x = gd + r. Either r = 0 or
N(r) < N(d) by ED’s properties.

Notice that r isin J as r =2 —gd € J, so N(r) < N(d) cannot happen as
we chose d as the minimum. Hence r = 0, and « = ¢(d) € (d). So J C (d) =
J = (d) with above. O



