
This documents assumes that you are familiar with the definitions involved.
Please do notify me if there’s any logical mistakes or unclear portions.

Theorem 1. For o(g) <∞, o(g) is the smallest positive integer k with gk = 1.
Furthermore,

gm = 1 ⇐⇒ o(g)|m (1)

gm = gn ⇐⇒ m ≡ n (mod o(g)) (2)

o(gd) =
o(g)

gcd(o(g)), d)
(3)

We note that o(g) =
∣∣ {gn | n ∈ Z}

∣∣ is our definition.

Proof. Consider the list of powers S =
{
g, g2, g3, . . .

}
there must be repetitions,

otherwise o(g) = ∞. This means that ∃a, b ∈ Z+, a < b s.t. ga = gb implying
1 = gb−a so ∃m with gm = 1. Let k be the smallest such integer now that we
know it exists.

We first my show inclusion. Consider T =
{

1, g, . . . , gk−1
}

, it is trivial that
T ∈ S. For the other direction, let gd be any element in S. We apply the
division algorithm to see that d = t · k + r with 0 ≤ r < k.

gd = gtk+r = (gk)tgr = gr ∈ T

Thus we have equality of sets.
Now we have o(g) ≤ k. To tie it all up, we need to show that the set{

1, g, . . . , gk−1
}

are all distinct. This is trivial as if not then ga = gb will
indicate that our choice of k is contradicted.

Finally, for the three corollaries, we have the following

1. Suppose k|m,m = tk. Then gm = gtk = 1.

Now for the other direction, let gm = 1,m = tk + r with the division
algorithm. Then gtk+r = (1)gr = 1 implies that r = 0 and we have
divisibility.

2. Trivial from the above techniques.

3. Say o(g) = k, gcd (k, d) = t =⇒ ∃k1, d1 s.t. k = tk1, d = td1, gcd (k1, d1) =
1. We know that by definition that o(gd) is the smallest positive integer,
say l, such that (gd)l = 1.

(gd)l = 1 ⇐⇒ gdl = 1 ⇐⇒ o(g)|dl ⇐⇒ k|dl (4)

⇐⇒ tk1|td1l (5)

⇐⇒ k1|d1l (6)

⇐⇒ k1|l (7)

where the last step comes from (k1, d1) = 1. Hence the smallest number l
is k1, which is exactly what we want if we sub it all back in.
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Theorem 2. Subgroups of cyclic group are cyclic.

Proof. Assume G = 〈g〉, and H ≤ G. There are two cases:

1. H = {1}, trivial.

2. |H| > 1, so ∃gm ∈ H,m ∈ Z+. Let k be the smallest positive integer with
gk ∈ H, and claim H = 〈gk〉.
For 〈gk〉 ⊂ H, we have this almost trivially by definition of gk and prop-
erties of subgroups. On the other hand to show the other inclusion, we
know ∀x ∈ H,x ∈ G =⇒ x = gd. Now perform division with remainder,

d = tk + r

Notice that gr = gd−tk = gd(gk)−t = x(gk)−t, with both terms in H, so
gr ∈ H. But since r is a remainder, we know 0 ≤ r ≤ k − 1. . . but we
know k is the minimal gk ∈ H! Hence r = 0.

Finally,

x = (gk)t ∈ 〈gk〉 =⇒ H ≤ 〈gk〉 (8)

and we are done.

Theorem 3. Cosets properties:

|Hg| = |H| (9)

Hg = H ⇐⇒ g ∈ H (10)

Hx = Hy or Hx ∩Hy = ∅ (11)

Hx = Hy =⇒ xy−1 ∈ H (12)

Proof. 1. By construction as the map is H → Hg with elements h 7→ hg
which is bijective.

2. See proof of 4, with x = g, y = 1.

3. Assume Hx ∩Hy 6= ∅, then ∃z in the intersection. We know z = h1x =
h2y for some h1, h2 ∈ H. Then there exists an element h such that

hx = hh−1
1 h1x = hh−1

1 z = hh−1
1 h2y ∈ Hy (13)

so Hx ⊆ Hy. Similar proof for other direction, then they are equal.

4. Suppose Hx = Hy, meaning that x ∈ Hx by definition so x ∈ Hy =⇒
x = hy, h ∈ H also by number 3. Then xy−1 = h ∈ H.

For the other direction, suppose xy−1 ∈ H, then xy−1y ∈ Hy meaning
that x ∈ Hy. Similarly we have x ∈ Hx so that Hx and Hy are not
disjoint. Now use point 3.
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Theorem 4. Show that conjugacy relation is an equivalence relation and |CG(g)||Cg| =
|G|

Proof. First, for the equivalence relation on G:

• Reflexive: i−1gi = g

• Symmetric: if x−1gx = f , then
(
x−1

)−1
fx−1 = g.

• Transitive: if x−1gx = f, y−1fy = h, then (xy)−1g(xy) = h as (xy)−1 =
y−1x−1.

Next, we want to show the relationship on conjugacy classes and centralizers.
From Lagrange, we know that |G : H||H| = |G|, so we can sort of match it up
such that CG(g) is the subgroup and the conjugacy classes are like the cosets.
Hence, if we show that |G : CG(g) = |Cg|, we are done.

Consider α(x) : CG(g)→ Cg with CG(g) ·x 7→ x−1gx. Then α is well defined
if:

CG(g)x = CG(g)y (14)

xy−1 ∈ CG(g) (15)

xy−1g = g(xy−1) (16)

y−1gy = x−1gx (17)

α(x) = α(y) (18)

Since each of those lines are iff implications, the reverse will show 1 to 1. Also,
α is onto by construction, hence α is bijection and we are done.

Theorem 5. Cauchy’s theorem: let p prime, and if p
∣∣ |G|, then ∃g ∈ G with

o(g) = p.

Proof. Consider the set T = {(g1, g2, . . . , gp) | g1g2 . . . gp = 1} by choosing arbi-
trary p− 1 elements then fixing the gp. Hence we have |T | = |G|p−1.

Let α : T → T, (g1, . . . , gp) 7→ (g2, g3, . . . , gp, g1). We note that (g2g3 . . . gp)g1 =
g−1
1 g1 = 1, hence it’s a valid mapping and one can also verify it’s bijective.

So α is a permutation on T , and part of the symmetric group α ∈ Sp. More
importantly, αp = I, so o(a)|p meaning that o(a) can be either 1 or p. Then we
can rewrite

T = {elements in a 1-cycle ∪ elements in a p-cycle} (19)

Let’s count this smartly in two ways,

|T | = |G|p−1 = r + sp

where r is the number of 1 cycle, and s be the number of orbits with p elements.
Since we know p

∣∣ |G|, we should be able to divide by p on both sides, meaning
that r is a multiple of p. It cannot be zero, as the trivial 1 is in it, then that
means there exists at least p elements (we only need 2 though!) of the 1 cycle.
Since the one cycle looks like g1 = g2 = · · · = gp, we are done as that means
g1g1 . . . g1 = (g1)p = 1.
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Theorem 6. If M,N EG,M ∩N = {1} ,M ·N = G, then G ∼= M ×N .

We first need a lemma.

Lemma 1. If M,N EG,M ∩N = {1}, then mn = nm for all elements.

Proof. Consider m−1n−1mn = 1 where the first three and the 2nd three are
considered in different ways. Recall that since they are normal subgroups, con-
jugation doesn’t affect them, hence the first 3 can be considered in N while the
2nd three is in M . Hence we have mn = nm.

Proof. Consider α : M × N → G, (m,n) 7→ mn. We wish to show it is a
homomorphism.

It is onto by the M ·N = G condition.
It is one-to-one as

α(m1, n1) = α(m2, n2) (20)

m1n1 = m2n2 (21)

m−1
2 m1 = n2n

−1
1 = {1} (22)

The last line comes from the fact that the left side is in M , the right side is in
N and their intersection is only 1. Hence m2 = m1, n2 = n1.

Finally,

α ((m1, n1) (m2, n2))
?
= α(m1.n1)α (m2, n2) (23)

α ((m1m2, n1n2))
?
= (24)

m1m2n1n2 = m1n1m2n2 (25)

m2n1 = n1m2 (26)

and the last line uses our lemma. Now α is an isomorphism and we are done.

Theorem 7. Given a mapping φ : R → T that the image is a sub-ring of T ,
and the kernel is an ideal in R. Also show the 1st isomorphism theorem:

R/ ker(φ) ∼= =(φ) (27)

Proof. We first show that image of homomorphism is a subring. It is easy to
show that it’s non-empty by construction, and the subtraction/multiplication
condition comes naturally. For the kernel, the fact that it’s a subring is also
easy, and the ideal test is also fairly simple.

The non-trivial part is the isomorphism theorem. We consider the map
α : R/ ker(φ) → =(φ) with the following operation ker (φ) + x 7→ φ(x). Our
notation of ker(φ) + x is the congruence classes modulo the kernel.
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We show it is well defined, if x ∼= y:

x ≡ y (mod ker(φ))

y − x ∈ ker(φ)

φ(y − x) = 0

φ(y)− φ(x) = 0

φ(y) = φ(x)

α(y) = α(x)

Since it is iff statements, the backwards way shows one-to-one. Furthermore, α
is onto by construction due to properties of image. We are now done after we
prove the homomorphism properties, which is quite easy.

Theorem 8. Prove that if R is a simple commutative ring, then it is either a
field or a zero ring.

Proof. Assume that R is a commutative, simple ring. We have two cases based
on the existence of zero divisors:

1. If ∃a, b 6= 0 with ab = 0. We consider the set N(b) = {x ∈ R | xb = 0}ER.
We know it is non-empty as 0 ∈ N(b), and one can easily prove that this
is indeed an ideal.

Furthermore, we actually know that a ∈ N(b) also, and since R is simple,
N(b) = R by definition. Hence, xb = 0,∀x ∈ F =⇒ R · b = 0.

Next consider N = {y ∈ R | Ry = 0}ER. It is again non-empty as 0 is in
it, and again ideal is left as an trivial exercise. From the characterization
of b above, we know that b ∈ N also, proving again that N = R by
definition of simple.

Hence this means that R is a zero ring.

As an aside, since the multiplication operation is without information, we
know the addition subgroup is an ideal (doesn’t contradictions simplicity
as it’s all the elements). Hence there’s a prime number of elements in R,
or simply R = {0}.

2. AssumeR has no zero divisors, and is non-empty. ConsiderRa = {ra | r ∈ R}E
R. It’s non-empty by construction, and ideal properties comes almost triv-
ially. Once again, we then know that Ra = R by simple property.

Now as we know that Ra = R, a ∈ R, hence there must be an element e
such that a = ea! For any other element b, we have

ba = bea

ba− bea = 0

(b− be) a = 0 =⇒ b− be = 0

so e is our fixed identity as R is commutative.
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Finally, for any x 6= 0, we can have the same ideal as described above
of {0} 6= Rx = R. And now with e ∈ R identity in our pocket, we can
conclude there exists an element y such that e = yx, and again we can use
commutative property to have xy = yx = e.

Now R is a field.

Theorem 9. Prime implies irreducibility. Furthermore, in a PID irreducibility
implies prime.

Proof. This is in an integral domain. Assume that p is prime, and let d|p so
∃x, dx = p.

Now, we know p|dx and p is prime, hence either p|d or p|x. The latter
condition signifies that ∃y s.t.

py = x (28)

dx = dpy = p =⇒ p(dy − 1) = 0 (29)

hence by non-zero definition, dy = 1 =⇒ d ∼ 1.
Now, for the PID statement. Assume that R is a PID, with q ∈ R irreducible

and q|ab. We need tho show that q|a or q|b.
Consider gcd(q, a), by lemma on existence of gcd in PIDs, we know ∃d, gcd(q, a) =

d =⇒ d ∼ gcd(q, a). Now d|q, d|a, and q is irreducible so either d is unit or
d ∼ q.

If d ∼ q, then q|d and d|a and we are done by transitivity.
If d ∼ 1 (unit), we consider d = sq + ta for some s, t (exists due to gcd

operator). Furthermore, we note that there is a f, fd = 1. Hence

1 = fd = fsq + fta (30)

b = fsqb+ ftab (31)

by commutative property. Note that q divides both terms as q appears in the
first one and q|ab is one of our assumptions, so it divides b, q|b.

Theorem 10. ED =⇒ PID

Proof. Let R be an ED, and J E R. If J = {0}, then J = (0) is principal, so
assume J 6= {0}. We choose 0 6= d ∈ J with the smallest possible N(d).

Claim that J = (d). Since d ∈ J =⇒ rd ∈ J, ∀r ∈ R so (d) ⊆ J .
Conversely, ∀x ∈ J,∃q, r ∈ R such that x = qd + r. Either r = 0 or

N(r) < N(d) by ED’s properties.
Notice that r is in J as r = x − qd ∈ J , so N(r) < N(d) cannot happen as

we chose d as the minimum. Hence r = 0, and x = q(d) ∈ (d). So J ⊆ (d) =⇒
J = (d) with above.

6


