This documents assumes that you are familiar with the definitions involved. Please do notify me if there's any logical mistakes or unclear portions.

Theorem 1. For $o(g)<\infty, o(g)$ is the smallest positive integer k with $g^{k}=1$. Furthermore,

$$
\begin{align*}
g^{m}=1 & \Longleftrightarrow o(g) \mid m \tag{1}\\
g^{m}=g^{n} & \Longleftrightarrow m \equiv n \quad(\bmod o(g)) \tag{2}\\
o\left(g^{d}\right)= & \frac{o(g)}{\operatorname{gcd}(o(g)), d)} \tag{3}
\end{align*}
$$

We note that $o(g)=\left|\left\{g^{n} \mid n \in \mathbb{Z}\right\}\right|$ is our definition.
Proof. Consider the list of powers $S=\left\{g, g^{2}, g^{3}, \ldots\right\}$ there must be repetitions, otherwise $o(g)=\infty$. This means that $\exists a, b \in \mathbb{Z}^{+}, a<b$ s.t. $g^{a}=g^{b}$ implying $1=g^{b-a}$ so $\exists m$ with $g^{m}=1$. Let k be the smallest such integer now that we know it exists.

We first my show inclusion. Consider $T=\left\{1, g, \ldots, g^{k-1}\right\}$, it is trivial that $T \in S$. For the other direction, let g^{d} be any element in S. We apply the division algorithm to see that $d=t \cdot k+r$ with $0 \leq r<k$.

$$
g^{d}=g^{t k+r}=\left(g^{k}\right)^{t} g^{r}=g^{r} \in T
$$

Thus we have equality of sets.
Now we have $o(g) \leq k$. To tie it all up, we need to show that the set $\left\{1, g, \ldots, g^{k-1}\right\}$ are all distinct. This is trivial as if not then $g^{a}=g^{b}$ will indicate that our choice of k is contradicted.

Finally, for the three corollaries, we have the following

1. Suppose $k \mid m, m=t k$. Then $g^{m}=g^{t k}=1$.

Now for the other direction, let $g^{m}=1, m=t k+r$ with the division algorithm. Then $g^{t k+r}=(1) g^{r}=1$ implies that $r=0$ and we have divisibility.
2. Trivial from the above techniques.
3. Say $o(g)=k, \operatorname{gcd}(k, d)=t \Longrightarrow \exists k_{1}, d_{1}$ s.t. $k=t k_{1}, d=t d_{1}, \operatorname{gcd}\left(k_{1}, d_{1}\right)=$ 1. We know that by definition that $o\left(g^{d}\right)$ is the smallest positive integer, say l, such that $\left(g^{d}\right)^{l}=1$.

$$
\begin{align*}
\left(g^{d}\right)^{l}=1 \Longleftrightarrow g^{d l}=1 \Longleftrightarrow o(g) \mid d l & \Longleftrightarrow k \mid d l \tag{4}\\
& \Longleftrightarrow t k_{1} \mid t d_{1} l \tag{5}\\
& \Longleftrightarrow k_{1} \mid d_{1} l \tag{6}\\
& \Longleftrightarrow k_{1} \mid l \tag{7}
\end{align*}
$$

where the last step comes from $\left(k_{1}, d_{1}\right)=1$. Hence the smallest number l is k_{1}, which is exactly what we want if we sub it all back in.

Theorem 2. Subgroups of cyclic group are cyclic.
Proof. Assume $G=\langle g\rangle$, and $H \leq G$. There are two cases:

1. $H=\{1\}$, trivial.
2. $|H|>1$, so $\exists g^{m} \in H, m \in \mathbb{Z}^{+}$. Let k be the smallest positive integer with $g^{k} \in H$, and claim $H=\left\langle g^{k}\right\rangle$.
For $\left\langle g^{k}\right\rangle \subset H$, we have this almost trivially by definition of g^{k} and properties of subgroups. On the other hand to show the other inclusion, we know $\forall x \in H, x \in G \Longrightarrow x=g^{d}$. Now perform division with remainder,

$$
d=t k+r
$$

Notice that $g^{r}=g^{d-t k}=g^{d}\left(g^{k}\right)^{-t}=x\left(g^{k}\right)^{-t}$, with both terms in H, so $g^{r} \in H$. But since r is a remainder, we know $0 \leq r \leq k-1 \ldots$ but we know k is the minimal $g^{k} \in H$! Hence $r=0$.
Finally,

$$
\begin{equation*}
x=\left(g^{k}\right)^{t} \in\left\langle g^{k}\right\rangle \Longrightarrow H \leq\left\langle g^{k}\right\rangle \tag{8}
\end{equation*}
$$

and we are done.

Theorem 3. Cosets properties:

$$
\begin{gather*}
|H g|=|H| \tag{9}\\
H g=H \Longleftrightarrow g \in H \tag{10}\\
H x=H y \text { or } H x \cap H y=\varnothing \tag{11}\\
H x=H y \Longrightarrow x y^{-1} \in H \tag{12}
\end{gather*}
$$

Proof. 1. By construction as the map is $H \rightarrow H g$ with elements $h \mapsto h g$ which is bijective.
2. See proof of 4 , with $x=g, y=1$.
3. Assume $H x \cap H y \neq \varnothing$, then $\exists z$ in the intersection. We know $z=h_{1} x=$ $h_{2} y$ for some $h_{1}, h_{2} \in H$. Then there exists an element h such that

$$
\begin{equation*}
h x=h h_{1}^{-1} h_{1} x=h h_{1}^{-1} z=h h_{1}^{-1} h_{2} y \in H y \tag{13}
\end{equation*}
$$

so $H x \subseteq H y$. Similar proof for other direction, then they are equal.
4. Suppose $H x=H y$, meaning that $x \in H x$ by definition so $x \in H y \Longrightarrow$ $x=h y, h \in H$ also by number 3 . Then $x y^{-1}=h \in H$.
For the other direction, suppose $x y^{-1} \in H$, then $x y^{-1} y \in H y$ meaning that $x \in H y$. Similarly we have $x \in H x$ so that $H x$ and $H y$ are not disjoint. Now use point 3 .

Theorem 4. Show that conjugacy relation is an equivalence relation and $\left|C_{G}(g)\right|\left|\mathscr{C}_{g}\right|=$ $|G|$

Proof. First, for the equivalence relation on G :

- Reflexive: $i^{-1} g i=g$
- Symmetric: if $x^{-1} g x=f$, then $\left(x^{-1}\right)^{-1} f x^{-1}=g$.
- Transitive: if $x^{-1} g x=f, y^{-1} f y=h$, then $(x y)^{-1} g(x y)=h$ as $(x y)^{-1}=$ $y^{-1} x^{-1}$.

Next, we want to show the relationship on conjugacy classes and centralizers. From Lagrange, we know that $|G: H||H|=|G|$, so we can sort of match it up such that $C_{G}(g)$ is the subgroup and the conjugacy classes are like the cosets. Hence, if we show that $\left|G: C_{G}(g)=\left|\mathscr{C}_{g}\right|\right.$, we are done.

Consider $\alpha(x): C_{G}(g) \rightarrow \mathscr{C}_{g}$ with $C_{G}(g) \cdot x \mapsto x^{-1} g x$. Then α is well defined if:

$$
\begin{align*}
C_{G}(g) x & =C_{G}(g) y \tag{14}\\
x y^{-1} & \in C_{G}(g) \tag{15}\\
x y^{-1} g & =g\left(x y^{-1}\right) \tag{16}\\
y^{-1} g y & =x^{-1} g x \tag{17}\\
\alpha(x) & =\alpha(y) \tag{18}
\end{align*}
$$

Since each of those lines are iff implications, the reverse will show 1 to 1 . Also, α is onto by construction, hence α is bijection and we are done.

Theorem 5. Cauchy's theorem: let p prime, and if $p||G|$, then $\exists g \in G$ with $o(g)=p$.

Proof. Consider the set $T=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \mid g_{1} g_{2} \ldots g_{p}=1\right\}$ by choosing arbitrary $p-1$ elements then fixing the g_{p}. Hence we have $|T|=|G|^{p-1}$.

Let $\alpha: T \rightarrow T,\left(g_{1}, \ldots, g_{p}\right) \mapsto\left(g_{2}, g_{3}, \ldots, g_{p}, g_{1}\right)$. We note that $\left(g_{2} g_{3} \ldots g_{p}\right) g_{1}=$ $g_{1}^{-1} g_{1}=1$, hence it's a valid mapping and one can also verify it's bijective.

So α is a permutation on T, and part of the symmetric group $\alpha \in S_{p}$. More importantly, $\alpha^{p}=I$, so $o(a) \mid p$ meaning that $o(a)$ can be either 1 or p. Then we can rewrite

$$
\begin{equation*}
T=\{\text { elements in a } 1 \text {-cycle } \cup \text { elements in a } p \text {-cycle }\} \tag{19}
\end{equation*}
$$

Let's count this smartly in two ways,

$$
|T|=|G|^{p-1}=r+s p
$$

where r is the number of 1 cycle, and s be the number of orbits with p elements. Since we know $p||G|$, we should be able to divide by p on both sides, meaning that r is a multiple of p. It cannot be zero, as the trivial 1 is in it, then that means there exists at least p elements (we only need 2 though!) of the 1 cycle. Since the one cycle looks like $g_{1}=g_{2}=\cdots=g_{p}$, we are done as that means $g_{1} g_{1} \ldots g_{1}=\left(g_{1}\right)^{p}=1$.

Theorem 6. If $M, N \unlhd G, M \cap N=\{1\}, M \cdot N=G$, then $G \cong M \times N$.
We first need a lemma.
Lemma 1. If $M, N \unlhd G, M \cap N=\{1\}$, then $m n=n m$ for all elements.
Proof. Consider $m^{-1} n^{-1} m n=1$ where the first three and the 2 nd three are considered in different ways. Recall that since they are normal subgroups, conjugation doesn't affect them, hence the first 3 can be considered in N while the 2nd three is in M. Hence we have $m n=n m$.

Proof. Consider $\alpha: M \times N \rightarrow G,(m, n) \mapsto m n$. We wish to show it is a homomorphism.

It is onto by the $M \cdot N=G$ condition.
It is one-to-one as

$$
\begin{align*}
\alpha\left(m_{1}, n_{1}\right) & =\alpha\left(m_{2}, n_{2}\right) \tag{20}\\
m_{1} n_{1} & =m_{2} n_{2} \tag{21}\\
m_{2}^{-1} m_{1} & =n_{2} n_{1}^{-1}=\{1\} \tag{22}
\end{align*}
$$

The last line comes from the fact that the left side is in M, the right side is in N and their intersection is only 1 . Hence $m_{2}=m_{1}, n_{2}=n_{1}$.

Finally,

$$
\begin{align*}
\alpha\left(\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)\right) & \stackrel{?}{=} \alpha\left(m_{1} \cdot n_{1}\right) \alpha\left(m_{2}, n_{2}\right) \tag{23}\\
\alpha\left(\left(m_{1} m_{2}, n_{1} n_{2}\right)\right) & \stackrel{?}{=} \tag{24}\\
m_{1} m_{2} n_{1} n_{2} & =m_{1} n_{1} m_{2} n_{2} \tag{25}\\
m_{2} n_{1} & =n_{1} m_{2} \tag{26}
\end{align*}
$$

and the last line uses our lemma. Now α is an isomorphism and we are done.
Theorem 7. Given a mapping $\phi: R \rightarrow T$ that the image is a sub-ring of T, and the kernel is an ideal in R. Also show the 1 st isomorphism theorem:

$$
\begin{equation*}
R / \operatorname{ker}(\phi) \cong \Im(\phi) \tag{27}
\end{equation*}
$$

Proof. We first show that image of homomorphism is a subring. It is easy to show that it's non-empty by construction, and the subtraction/multiplication condition comes naturally. For the kernel, the fact that it's a subring is also easy, and the ideal test is also fairly simple.

The non-trivial part is the isomorphism theorem. We consider the map $\alpha: R / \operatorname{ker}(\phi) \rightarrow \Im(\phi)$ with the following operation $\operatorname{ker}(\phi)+x \mapsto \phi(x)$. Our notation of $\operatorname{ker}(\phi)+x$ is the congruence classes modulo the kernel.

We show it is well defined, if $x \cong y$:

$$
\begin{array}{r}
x \equiv y \quad(\bmod \operatorname{ker}(\phi)) \\
y-x \in \operatorname{ker}(\phi) \\
\phi(y-x)=0 \\
\phi(y)-\phi(x)=0 \\
\phi(y)=\phi(x) \\
\alpha(y)=\alpha(x)
\end{array}
$$

Since it is iff statements, the backwards way shows one-to-one. Furthermore, α is onto by construction due to properties of image. We are now done after we prove the homomorphism properties, which is quite easy.

Theorem 8. Prove that if R is a simple commutative ring, then it is either a field or a zero ring.

Proof. Assume that R is a commutative, simple ring. We have two cases based on the existence of zero divisors:

1. If $\exists a, b \neq 0$ with $a b=0$. We consider the set $N(b)=\{x \in R \mid x b=0\} \unlhd R$. We know it is non-empty as $0 \in N(b)$, and one can easily prove that this is indeed an ideal.
Furthermore, we actually know that $a \in N(b)$ also, and since R is simple, $N(b)=R$ by definition. Hence, $x b=0, \forall x \in F \Longrightarrow R \cdot b=0$.

Next consider $N=\{y \in R \mid R y=0\} \unlhd R$. It is again non-empty as 0 is in it, and again ideal is left as an trivial exercise. From the characterization of b above, we know that $b \in N$ also, proving again that $N=R$ by definition of simple.
Hence this means that R is a zero ring.
As an aside, since the multiplication operation is without information, we know the addition subgroup is an ideal (doesn't contradictions simplicity as it's all the elements). Hence there's a prime number of elements in R, or simply $R=\{0\}$.
2. Assume R has no zero divisors, and is non-empty. Consider $R_{a}=\{r a \mid r \in R\} \unlhd$ R. It's non-empty by construction, and ideal properties comes almost trivially. Once again, we then know that $R_{a}=R$ by simple property.
Now as we know that $R_{a}=R, a \in R$, hence there must be an element e such that $a=e a$! For any other element b, we have

$$
\begin{aligned}
b a & =b e a \\
b a-b e a & =0 \\
(b-b e) a & =0 \Longrightarrow b-b e=0
\end{aligned}
$$

so e is our fixed identity as R is commutative.

Finally, for any $x \neq 0$, we can have the same ideal as described above of $\{0\} \neq R_{x}=R$. And now with $e \in R$ identity in our pocket, we can conclude there exists an element y such that $e=y x$, and again we can use commutative property to have $x y=y x=e$.
Now R is a field.

Theorem 9. Prime implies irreducibility. Furthermore, in a PID irreducibility implies prime.

Proof. This is in an integral domain. Assume that p is prime, and let $d \mid p$ so $\exists x, d x=p$.

Now, we know $p \mid d x$ and p is prime, hence either $p \mid d$ or $p \mid x$. The latter condition signifies that $\exists y$ s.t.

$$
\begin{align*}
p y & =x \tag{28}\\
d x=d p y & =p \Longrightarrow p(d y-1) \quad=0 \tag{29}
\end{align*}
$$

hence by non-zero definition, $d y=1 \Longrightarrow d \sim 1$.
Now, for the PID statement. Assume that R is a PID, with $q \in R$ irreducible and $q \mid a b$. We need tho show that $q \mid a$ or $q \mid b$.

Consider $\operatorname{gcd}(q, a)$, by lemma on existence of gcd in PIDs, we know $\exists d, \operatorname{gcd}(q, a)=$ $d \Longrightarrow d \sim \operatorname{gcd}(q, a)$. Now $d|q, d| a$, and q is irreducible so either d is unit or $d \sim q$.

If $d \sim q$, then $q \mid d$ and $d \mid a$ and we are done by transitivity.
If $d \sim 1$ (unit), we consider $d=s q+t a$ for some s, t (exists due to gcd operator). Furthermore, we note that there is a $f, f d=1$. Hence

$$
\begin{align*}
1=f d & =f s q+f t a \tag{30}\\
b & =f s q b+f t a b \tag{31}
\end{align*}
$$

by commutative property. Note that q divides both terms as q appears in the first one and $q \mid a b$ is one of our assumptions, so it divides $b, q \mid b$.

Theorem 10. $E D \Longrightarrow P I D$
Proof. Let R be an ED, and $J \unlhd R$. If $J=\{0\}$, then $J=(0)$ is principal, so assume $J \neq\{0\}$. We choose $0 \neq d \in J$ with the smallest possible $N(d)$.

Claim that $J=(d)$. Since $d \in J \Longrightarrow r d \in J, \forall r \in R$ so $(d) \subseteq J$.
Conversely, $\forall x \in J, \exists q, r \in R$ such that $x=q d+r$. Either $r=0$ or $N(r)<N(d)$ by ED's properties.

Notice that r is in J as $r=x-q d \in J$, so $N(r)<N(d)$ cannot happen as we chose d as the minimum. Hence $r=0$, and $x=q(d) \in(d)$. So $J \subseteq(d) \Longrightarrow$ $J=(d)$ with above.

