This documents assumes that you are familiar with the definitions involved. Please do notify me if there's any logical mistakes or unclear portions.

Theorem 1. For $o(g) < \infty$, o(g) is the smallest positive integer k with $g^k = 1$. Furthermore,

$$g^m = 1 \iff o(g)|m \tag{1}$$

$$g^m = g^n \iff m \equiv n \pmod{o(g)}$$
 (2)

$$o(g^d) = \frac{o(g)}{\gcd(o(g)), d)} \tag{3}$$

We note that $o(g) = |\{g^n \mid n \in \mathbb{Z}\}|$ is our definition.

Proof. Consider the list of powers $S = \{g, g^2, g^3, \dots\}$ there must be repetitions, otherwise $o(g) = \infty$. This means that $\exists a, b \in \mathbb{Z}^+, a < b \text{ s.t. } g^a = g^b$ implying $1 = g^{b-a}$ so $\exists m$ with $g^m = 1$. Let k be the smallest such integer now that we know it exists.

We first my show inclusion. Consider $T = \{1, g, \dots, g^{k-1}\}$, it is trivial that $T \in S$. For the other direction, let g^d be any element in S. We apply the division algorithm to see that $d = t \cdot k + r$ with $0 \le r < k$.

$$g^d = g^{tk+r} = (g^k)^t g^r = g^r \in T$$

Thus we have equality of sets.

Now we have $o(g) \leq k$. To tie it all up, we need to show that the set $\{1, g, \ldots, g^{k-1}\}$ are all distinct. This is trivial as if not then $g^a = g^b$ will indicate that our choice of k is contradicted.

Finally, for the three corollaries, we have the following

1. Suppose k|m, m = tk. Then $g^m = g^{tk} = 1$.

Now for the other direction, let $g^m=1, m=tk+r$ with the division algorithm. Then $g^{tk+r}=(1)g^r=1$ implies that r=0 and we have divisibility.

- 2. Trivial from the above techniques.
- 3. Say o(g) = k, $gcd(k, d) = t \implies \exists k_1, d_1 \text{ s.t. } k = tk_1, d = td_1, gcd(k_1, d_1) = 1$. We know that by definition that $o(g^d)$ is the smallest positive integer, say l, such that $(g^d)^l = 1$.

$$(g^d)^l = 1 \iff g^{dl} = 1 \iff o(g)|dl \iff k|dl$$
 (4)

$$\iff tk_1|td_1l$$
 (5)

$$\iff k_1|d_1l \tag{6}$$

$$\iff k_1|l \tag{7}$$

where the last step comes from $(k_1, d_1) = 1$. Hence the smallest number l is k_1 , which is exactly what we want if we sub it all back in.

Theorem 2. Subgroups of cyclic group are cyclic.

Proof. Assume $G = \langle g \rangle$, and $H \leq G$. There are two cases:

- 1. $H = \{1\}$, trivial.
- 2. |H| > 1, so $\exists g^m \in H, m \in \mathbb{Z}^+$. Let k be the smallest positive integer with $g^k \in H$, and claim $H = \langle g^k \rangle$.

For $\langle g^k \rangle \subset H$, we have this almost trivially by definition of g^k and properties of subgroups. On the other hand to show the other inclusion, we know $\forall x \in H, x \in G \implies x = g^d$. Now perform division with remainder,

$$d = tk + r$$

Notice that $g^r = g^{d-tk} = g^d(g^k)^{-t} = x(g^k)^{-t}$, with both terms in H, so $g^r \in H$. But since r is a remainder, we know $0 \le r \le k-1...$ but we know k is the minimal $g^k \in H$! Hence r = 0.

Finally,

$$x = (g^k)^t \in \langle g^k \rangle \implies H \le \langle g^k \rangle$$
 (8)

and we are done.

Theorem 3. Cosets properties:

$$|Hq| = |H| \tag{9}$$

$$Hg = H \iff g \in H$$
 (10)

$$Hx = Hy \text{ or } Hx \cap Hy = \varnothing \tag{11}$$

$$Hx = Hy \implies xy^{-1} \in H \tag{12}$$

Proof. 1. By construction as the map is $H \to Hg$ with elements $h \mapsto hg$ which is bijective.

- 2. See proof of 4, with x = g, y = 1.
- 3. Assume $Hx \cap Hy \neq \emptyset$, then $\exists z$ in the intersection. We know $z = h_1x = h_2y$ for some $h_1, h_2 \in H$. Then there exists an element h such that

$$hx = hh_1^{-1}h_1x = hh_1^{-1}z = hh_1^{-1}h_2y \in Hy$$
(13)

so $Hx \subseteq Hy$. Similar proof for other direction, then they are equal.

4. Suppose Hx = Hy, meaning that $x \in Hx$ by definition so $x \in Hy \implies x = hy, h \in H$ also by number 3. Then $xy^{-1} = h \in H$.

For the other direction, suppose $xy^{-1} \in H$, then $xy^{-1}y \in Hy$ meaning that $x \in Hy$. Similarly we have $x \in Hx$ so that Hx and Hy are not disjoint. Now use point 3.

Theorem 4. Show that conjugacy relation is an equivalence relation and $|C_G(g)||\mathscr{C}_g| = |G|$

Proof. First, for the equivalence relation on G:

- Reflexive: $i^{-1}qi = q$
- Symmetric: if $x^{-1}gx = f$, then $(x^{-1})^{-1}fx^{-1} = g$.
- Transitive: if $x^{-1}gx = f, y^{-1}fy = h$, then $(xy)^{-1}g(xy) = h$ as $(xy)^{-1} = y^{-1}x^{-1}$.

Next, we want to show the relationship on conjugacy classes and centralizers. From Lagrange, we know that |G:H||H| = |G|, so we can sort of match it up such that $C_G(g)$ is the subgroup and the conjugacy classes are like the cosets. Hence, if we show that $|G:C_G(g)| = |\mathcal{C}_g|$, we are done.

Consider $\alpha(x): C_G(g) \to \mathscr{C}_g$ with $C_G(g) \cdot x \mapsto x^{-1}gx$. Then α is well defined if:

$$C_G(g)x = C_G(g)y (14)$$

$$xy^{-1} \in C_G(g) \tag{15}$$

$$xy^{-1}g = g(xy^{-1}) (16)$$

$$y^{-1}gy = x^{-1}gx (17)$$

$$\alpha(x) = \alpha(y) \tag{18}$$

Since each of those lines are iff implications, the reverse will show 1 to 1. Also, α is onto by construction, hence α is bijection and we are done.

Theorem 5. Cauchy's theorem: let p prime, and if $p \mid |G|$, then $\exists g \in G$ with o(g) = p.

Proof. Consider the set $T = \{(g_1, g_2, \dots, g_p) \mid g_1 g_2 \dots g_p = 1\}$ by choosing arbitrary p-1 elements then fixing the g_p . Hence we have $|T| = |G|^{p-1}$.

Let $\alpha: T \to T, (g_1, \ldots, g_p) \mapsto (g_2, g_3, \ldots, g_p, g_1)$. We note that $(g_2g_3 \ldots g_p)g_1 = g_1^{-1}g_1 = 1$, hence it's a valid mapping and one can also verify it's bijective.

So α is a permutation on T, and part of the symmetric group $\alpha \in S_p$. More importantly, $\alpha^p = I$, so o(a)|p meaning that o(a) can be either 1 or p. Then we can rewrite

$$T = \{\text{elements in a 1-cycle } \cup \text{ elements in a } p\text{-cycle}\}\$$
 (19)

Let's count this smartly in two ways,

$$|T| = |G|^{p-1} = r + sp$$

where r is the number of 1 cycle, and s be the number of orbits with p elements. Since we know $p \mid |G|$, we should be able to divide by p on both sides, meaning that r is a multiple of p. It cannot be zero, as the trivial 1 is in it, then that means there exists at least p elements (we only need 2 though!) of the 1 cycle. Since the one cycle looks like $g_1 = g_2 = \cdots = g_p$, we are done as that means $g_1g_1 \ldots g_1 = (g_1)^p = 1$.

Theorem 6. If $M, N \subseteq G, M \cap N = \{1\}, M \cdot N = G$, then $G \cong M \times N$.

We first need a lemma.

Lemma 1. If $M, N \subseteq G, M \cap N = \{1\}$, then mn = nm for all elements.

Proof. Consider $m^{-1}n^{-1}mn = 1$ where the first three and the 2nd three are considered in different ways. Recall that since they are normal subgroups, conjugation doesn't affect them, hence the first 3 can be considered in N while the 2nd three is in M. Hence we have mn = nm.

Proof. Consider $\alpha: M \times N \to G, (m,n) \mapsto mn$. We wish to show it is a homomorphism.

It is onto by the $M \cdot N = G$ condition.

It is one-to-one as

$$\alpha(m_1, n_1) = \alpha(m_2, n_2) \tag{20}$$

$$m_1 n_1 = m_2 n_2 \tag{21}$$

$$m_2^{-1}m_1 = n_2n_1^{-1} = \{1\} (22)$$

The last line comes from the fact that the left side is in M, the right side is in N and their intersection is only 1. Hence $m_2 = m_1, n_2 = n_1$.

Finally,

$$\alpha((m_1, n_1)(m_2, n_2)) \stackrel{?}{=} \alpha(m_1.n_1)\alpha(m_2, n_2)$$
(23)

$$\alpha\left(\left(m_1 m_2, n_1 n_2\right)\right) \stackrel{?}{=} \tag{24}$$

$$m_1 m_2 n_1 n_2 = m_1 n_1 m_2 n_2 \tag{25}$$

$$m_2 n_1 = n_1 m_2 \tag{26}$$

and the last line uses our lemma. Now α is an isomorphism and we are done. \square

Theorem 7. Given a mapping $\phi: R \to T$ that the image is a sub-ring of T, and the kernel is an ideal in R. Also show the 1st isomorphism theorem:

$$R/\ker(\phi) \cong \Im(\phi)$$
 (27)

Proof. We first show that image of homomorphism is a subring. It is easy to show that it's non-empty by construction, and the subtraction/multiplication condition comes naturally. For the kernel, the fact that it's a subring is also easy, and the ideal test is also fairly simple.

The non-trivial part is the isomorphism theorem. We consider the map $\alpha: R/\ker(\phi) \to \Im(\phi)$ with the following operation $\ker(\phi) + x \mapsto \phi(x)$. Our notation of $\ker(\phi) + x$ is the congruence classes modulo the kernel.

We show it is well defined, if $x \cong y$:

$$x \equiv y \pmod{\ker(\phi)}$$
$$y - x \in \ker(\phi)$$
$$\phi(y - x) = 0$$
$$\phi(y) - \phi(x) = 0$$
$$\phi(y) = \phi(x)$$
$$\alpha(y) = \alpha(x)$$

Since it is iff statements, the backwards way shows one-to-one. Furthermore, α is onto by construction due to properties of image. We are now done after we prove the homomorphism properties, which is quite easy.

Theorem 8. Prove that if R is a simple commutative ring, then it is either a field or a zero ring.

Proof. Assume that R is a commutative, simple ring. We have two cases based on the existence of zero divisors:

1. If $\exists a, b \neq 0$ with ab = 0. We consider the set $N(b) = \{x \in R \mid xb = 0\} \leq R$. We know it is non-empty as $0 \in N(b)$, and one can easily prove that this is indeed an ideal.

Furthermore, we actually know that $a \in N(b)$ also, and since R is simple, N(b) = R by definition. Hence, $xb = 0, \forall x \in F \implies R \cdot b = 0$.

Next consider $N = \{y \in R \mid Ry = 0\} \subseteq R$. It is again non-empty as 0 is in it, and again ideal is left as an trivial exercise. From the characterization of b above, we know that $b \in N$ also, proving again that N = R by definition of simple.

Hence this means that R is a zero ring.

As an aside, since the multiplication operation is without information, we know the addition subgroup is an ideal (doesn't contradictions simplicity as it's all the elements). Hence there's a prime number of elements in R, or simply $R = \{0\}$.

2. Assume R has no zero divisors, and is non-empty. Consider $R_a = \{ra \mid r \in R\} \leq R$. It's non-empty by construction, and ideal properties comes almost trivially. Once again, we then know that $R_a = R$ by simple property.

Now as we know that $R_a = R, a \in R$, hence there must be an element e such that a = ea! For any other element b, we have

$$ba = bea$$

$$ba - bea = 0$$

$$(b - be) a = 0 \implies b - be = 0$$

so e is our fixed identity as R is commutative.

Finally, for any $x \neq 0$, we can have the same ideal as described above of $\{0\} \neq R_x = R$. And now with $e \in R$ identity in our pocket, we can conclude there exists an element y such that e = yx, and again we can use commutative property to have xy = yx = e.

Now R is a field.

Theorem 9. Prime implies irreducibility. Furthermore, in a PID irreducibility implies prime.

Proof. This is in an integral domain. Assume that p is prime, and let d|p so $\exists x, dx = p$.

Now, we know p|dx and p is prime, hence either p|d or p|x. The latter condition signifies that $\exists y \text{ s.t.}$

$$py = x (28)$$

$$dx = dpy = p \implies p(dy - 1) = 0 \tag{29}$$

hence by non-zero definition, $dy = 1 \implies d \sim 1$.

Now, for the PID statement. Assume that R is a PID, with $q \in R$ irreducible and q|ab. We need tho show that q|a or q|b.

Consider $\gcd(q,a)$, by lemma on existence of \gcd in PIDs, we know $\exists d, \gcd(q,a) = d \implies d \sim \gcd(q,a)$. Now d|q,d|a, and q is irreducible so either d is unit or $d \sim a$.

If $d \sim q$, then q|d and d|a and we are done by transitivity.

If $d \sim 1$ (unit), we consider d = sq + ta for some s, t (exists due to gcd operator). Furthermore, we note that there is a f, fd = 1. Hence

$$1 = fd = fsq + fta \tag{30}$$

$$b = fsqb + ftab (31)$$

by commutative property. Note that q divides both terms as q appears in the first one and q|ab is one of our assumptions, so it divides b, q|b.

Theorem 10. $ED \implies PID$

Proof. Let R be an ED, and $J \subseteq R$. If $J = \{0\}$, then J = (0) is principal, so assume $J \neq \{0\}$. We choose $0 \neq d \in J$ with the smallest possible N(d).

Claim that J = (d). Since $d \in J \implies rd \in J, \forall r \in R \text{ so } (d) \subseteq J$.

Conversely, $\forall x \in J, \exists q, r \in R$ such that x = qd + r. Either r = 0 or N(r) < N(d) by ED's properties.

Notice that r is in J as $r=x-qd\in J$, so N(r)< N(d) cannot happen as we chose d as the minimum. Hence r=0, and $x=q(d)\in (d)$. So $J\subseteq (d)\Longrightarrow J=(d)$ with above. \square