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Abstract. The problem of preconditioning the p-version mass matrix on meshes of (possibly4
curvilinear) triangular elements in two dimensions is considered. Through a judicious choice of5
hierarchical basis, it is shown that a preconditioner involving only diagonal solves on the vertices,6
edges and element interiors gives rise to a preconditioned system for which the condition number is7
bounded independently of the polynomial order p and the mesh size h. The analysis is performed8
in the framework of an Additive Schwarz Method and requires the construction of new polynomial9
extension theorems, similar to those that are used in the analysis of the stiffness matrix. However, in10
the case of the mass matrix it is necessary to look at traces and extensions from the space L2 (rather11
than H1) and to make sense of the traces of polynomials regarded as functions in L2. Numerical12
examples are presented illustrating the performance of the algorithm.13
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1. Introduction. High order finite element methods have been shown, both in17

theory and in practice [12,21,25], to deliver exponential rates of convergence for large18

classes of problems, including cases where the solutions exhibit boundary layers and19

singularities [6, 21]. The choice of basis function to be used in the implementation20

has proved rather problematic from the outset when it was quickly realised that21

the natural, Lagrange or Peano polynomial, basis gave rise to exponential growth of22

the condition number [25]. This led to the use of hierarchic bases which, although23

considerably better conditioned than the Peano basis, still gave condition numbers24

that grow algebraically with the polynomial order p [3, 18, 19] e.g. as O(p4d) in25

d-spatial dimensions.26

Whilst a judicious choice of basis can help ameliorate ill-conditioning, the con-27

struction of an efficient preconditioner offers much better prospects. The domain28

decomposition preconditioner developed by Babuska et al. [5] was shown to reduce29

the growth of the condition number of the stiffness matrix to O(1 + log2 p) in two30

dimensions. Subsequent work extended these ideas to include preconditioners for the31

stiffness matrix in higher dimensions, hp-version finite element methods, boundary32

element methods, along with the use of more efficient approximate solvers on the33

subspaces [2, 4, 9, 10, 20]. Despite the rather extensive work on the analysis and con-34

struction of preconditioners for the stiffness matrix, virtually no attention has been35

paid to the question of preconditioning the mass matrix.36

One might reasonably ask if there really is an issue given that the mass matrix for37

the standard h-version finite element method is well-known to be uniformly bounded38

independent of the mesh size h? Nevertheless, just as for the stiffness matrix, the39

condition number for the mass matrix for the p-version finite element method is40

known to grow algebraically with the polynomial order [3, 18,19].41

The need to solve linear systems involving the mass matrix is easy to underes-42
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2 M. AINSWORTH, AND S. JIANG

timate. Explicit (and also implicit) time discretisation schemes immediately spring43

to mind, and require the inversion of the mass matrix at each time step. However,44

the need to efficiently invert the mass matrix also arises in less obvious situations45

including the construction of preconditioners for mixed finite element discretisation46

of the Stokes equations [22]. The linear systems that arise from singularly perturbed47

problems and plate models for thin elastic bodies have the structure of a mass matrix48

plus a small multiple of the stiffness matrix meaning, to a large extent, that the sys-49

tem essentially behaves like a mass matrix. It is easy to forget that the mass matrix50

(or a lumped version) is routinely used as a smoothener for multigrid solvers [7] for51

the h-version, without causing any eyebrows to be raised, thanks to the fact that the52

mass matrix is uniformly bounded for the h-version.53

The construction of efficient, domain decomposition type preconditioners for the54

p-version mass matrix is of practical interest, particularly when one turns to appli-55

cations beyond Poisson type problems, and this has not escaped the attention of the56

community completely. Early (unpublished) work of Smith [24] looked at precondi-57

tioners for the p-version mass matrix quadrilateral elements in two dimensions using58

tensor product type arguments.59

The present work considers the problem of preconditioning the p-version mass60

matrix on meshes of (possibly curvilinear) triangular elements in two dimensions.61

Through a judicious choice of hierarchical basis, it is shown that a preconditioner in-62

volving only diagonal solves on the vertices, edges and element interiors gives rise to63

a preconditioned system for which the condition number is bounded independently of64

the polynomial order p and the mesh size h. The analysis is performed in the frame-65

work of an Additive Schwarz Method and requires the construction of new polynomial66

extension theorems, similar to those that were derived in the analysis of the stiffness67

matrix in [5]. However, in the case of the mass matrix it is necessary to look at traces68

and extensions from the space L2 (rather than H1) and to make sense of the traces69

of polynomials regarded as functions in L2.70

The remainder of the paper is organized as follows. In section 2, we define the71

basis functions on a simplex. In section 3, we present the preconditioner, analyze72

its cost, and state the main theorem. In section 4, we present several illustrative73

numerical examples. In section 5, we use domain decomposition techniques to prove74

the key theorems. We conclude with section 6 containing the technical lemmas and75

estimates required.76

2. Basis Functions.77

2.1. Basis functions on a triangle. Let T be the reference triangle in R2 with78

vertices v1 = (−1,−1), v2 = (1,−1), v3 = (−1, 1), and the edges of T be denoted by γi79

for i = 1, 2, 3 such that γi is opposite of vertex vi; see Figure 1. Let p ≥ 3 be a given80

integer which is fixed throughout, and let Pp(T ) = span{xαyβ : 0 ≤ α, β, α + β ≤ p}81

denote the space of polynomials of total degree p on T . Finally, for i = 1, 2, 3 we let82

λi ∈ P1(T ) be the barycentric coordinates on T , i.e. the unique polynomial such that83

λi(vj) = δij .84

The classical Jacobi polynomials on [−1, 1] are denoted by P
(α,β)
n , where n is the85

order of the polynomial and α, β > −1 are weights [1]. These will be used to define86

the basis functions on triangle T as follows:87
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Fig. 1. Figure of reference triangle T

Interior Basis Functions. The orthogonalized, interior modified principal88

functions [16] are given by89

ψij(x, y) =
1− s

2

1 + s

2
P

(2,2)
i−1 (s)

(
1− t

2

)i+1
1 + t

2
P

(2i+3,1)
j−1 (t)90

91

for 1 ≤ i, j, i+ j ≤ p− 1, where92

s =
λ2 − λ1

1− λ3
, t = 2λ3 − 193

94

and λ1, λ2, λ3 are the barycentric coordinates of (x, y) ∈ T . Note that {ψij} vanishes95

on the boundary of T and gives a basis for Pp(T ) ∩H1
0 (T ).96

Edge Basis Functions. On edge γ1, we define97

χ(1)
n (x, y) = 4λ2λ3P

(2,2)
n (λ3 − λ2)9899

for n = 0, . . . , p − 2 with (x, y) ∈ T . We note that the factor λ2λ3 means that χ
(1)
n100

vanishes on edges γ2 and γ3. The basis functions χ
(2)
n , χ

(3)
n on edges γ2, γ3 are defined101

in an analogous fashion. The key property dictating this particular choice of basis is102

that χ
(i)
n |γi = (1− s2)P

(2,2)
n (s) where s ∈ [−1, 1] is a parametrization of γi.103

Vertex Basis Functions. On vertex vi for i = 1, 2, 3, we define104

ϕi(x, y) =
(−1)bp/2c+1

bp/2c
λiP

(1,1)
bp/2c−1(1− 2λi), (x, y) ∈ T.105

106

Note that ϕi(vj) = δij . One could replace bp/2c by p and still obtain a basis for107

Pp(T ). The reason for choosing bp/2c rather than simply p will become clear later108

(see subsection 4.1 and the remark after Lemma 6.3).109

110

It is not difficult to verify that the functions defined above are linearly indepen-111

dent. Moreover, there are 3 dofs from the vertices, 3p − 3 dofs from the edges and112
1
2

(
p2 − 3p+ 2

)
from the interior of T which sums to 1

2 (p + 1)(p + 2) = dimPp(T ).113

Hence, we have a basis for Pp(T ) with the following decomposition:114

Pp(T ) = span{ϕi}3i=1 ⊕
3⊕
i=1

span{χ(i)
n }

p−2
n=0 ⊕ span{ψij}1≤i,j,i+j≤p−1.(2.1)115

116
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4 M. AINSWORTH, AND S. JIANG

We enumerate the basis functions in the following order:117

1. the vertex functions {ϕi}3i=1,118

2. the edge functions {χ(1)
n }p−2

n=0, {χ(2)
n }p−2

n=0, {χ(3)
n }p−2

n=0119

3. the remaining dofs correspond to {ψij}1≤i,j,i+j≤p−1,120

then the mass matrix on T will have a block form121

M̂ =

M̂V V M̂V E M̂V I

M̂EV M̂EE M̂EI

M̂IV M̂IE M̂II

 .122

123

Likewise, the element load vector ~f and solution vector ~x take the partitioned forms124

~f =

~fV~fE
~fI

 , and ~x =

~xV~xE
~xI

 .125

126

2.2. Basis functions on partitions. Let Ω be a bounded two-dimensional127

domain, and let T be a triangulation of Ω. We assume that each element K ∈ T128

is the image of the reference element T under a bijective map FK (not necessarily129

linear) such that the Jacobian DFK is bounded uniformly in the sense that there130

exists non-negative constants θ,Θ such that for all K ∈ T there holds131

θ|K| ≤ |DFK | ≤ Θ|K|.(2.2)132133

We remark that this condition places no constraints on the shape regularity of the134

mesh, and, in particular, allows for “needle” elements.135

The basis functions on each element K ∈ T are defined in terms of the basis136

functions on the reference element in the usual way; for example, the first vertex137

basis functions is defined as138

ϕ1,K(x) := ϕ1(F−1
K (x)).139140

Thanks to the decomposition of the basis into interior contributions and boundary141

contributions that are only supported on a single entity (i.e. edge or vertex), C0 global142

conformity is enforced by matching the corresponding edge and vertex functions.143

3. Preconditioner and Statement of Main Theorem.144

3.1. Preconditioning on the reference element. We begin by constructing145

a preconditioner for the mass matrix M̂ on the reference element T . Let I3 be the146

3× 3 identity matrix, D̂V V = 1
p4 I3 and147

D̂EE = block diag(D̂
(1)
EE , D̂

(2)
EE , D̂

(3)
EE)148149

where D̂
(i)
EE , i = 1, 2, 3 is the diagonal matrix D̂

(i)
EE = diag(qj), with150

qj :=
2

(p+ 4 + j)(p− j + 1)

∫ 1

−1

(1− x2)2P
(2,2)
j (x)2 dx

=
64(j + 1)(j + 2)

(p+ 4 + j)(p− j + 1)(2j + 5)(j + 3)(j + 4)

(3.1)151

152
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PRECONDITIONING THE MASS MATRIX 5

for j = 0, . . . , p−2. We define our preconditioner, in the case of the reference element,153

in terms of its action when applied to a vector ~f in Algorithm 3.1.154

Algorithm 3.1 Preconditioner on the Reference Element

Require: M̂, ~f as partitioned in section 2
1: function
2: ~xI := M̂−1

II
~fI . Interior solve

3: ~xE := D̂−1
EE

(
~fE − M̂EI~xI

)
. Edges solve

4: ~xV := D̂−1
V V

(
~fV − M̂V I~xI

)
. Vertices solve

5: ~xI := ~xI − M̂−1
II M̂IV ~xV − M̂−1

II M̂IE~xE . Interior correction
6: return ~x := ~xI + ~xE + ~xV
7: end function

Direct manipulation reveals that Algorithm 3.1 defines a linear mapping ~f →155

~x := P̂−1 ~f where P̂−1 = Q̂−TD−1Q̂−1,156

Q̂ :=

I 0 M̂V IM̂
−1
II

0 I M̂EIM̂
−1
II

0 0 I

 , and D :=

D̂V V 0 0

0 D̂EE 0

0 0 M̂II

 .157

158

Clearly, Q̂ and D are invertible, hence159

P̂ = Q̂DQ̂T .(3.2)160161

We now state a key result:162

Theorem 3.1. There exists constants ĉ and Ĉ independent of p such that ĉP̂ ≤163

M̂ ≤ ĈP̂.1 Hence,164

cond(P̂−1M̂) ≤ Ĉ

ĉ
.165

166

The proof of Theorem 3.1 is postponed to section 5.167

3.2. Preconditioning on a mesh. The global mass matrix M on a partition168

T is obtained by the standard finite element sub-assembly procedure169

M =
∑
K∈T

ΛKMKΛT
K170

171

where MK is the element mass matrix, and ΛK the local assembly matrix. For the172

global mass matrix, we assume the dofs are numbered in a similar fashion to the one173

used on a single element, viz.:174

1. vertex basis dofs are (first in any order),175

2. edge basis dofs grouped by the edge they are supported on, and ordered by176

the index on the Jacobi polynomial,177

3. interior basis dofs grouped by the element on which they are supported.178

1We use the notation that A ≤ B implies B − A is semi-positive definite.
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6 M. AINSWORTH, AND S. JIANG

Thanks to (2.2), it follows that179

c
|K|
|T |

M̂ ≤MK ≤ C
|K|
|T |

M̂ ∀K ∈ T180
181

where the constants c and C depend only on θ and Θ. By the same token, we define182

a local preconditioner on K in terms of P̂183

PK =
|K|
|T |

P̂ =
|K|
|T |

Q̂DQ̂T(3.3)184
185

where the second equality follows from (3.2). The global preconditioner P is then186

obtained using sub-assembly to give:187

P =
∑
K∈T

ΛKPKΛT
K .188

189

Let the local assembly matrix ΛK be written in block form190

ΛK =

ΛK,V

ΛK,E

ΛK,I

191

192

where the blocks correspond to the vertex, edge and interior basis functions on element193

K, and let194

Q =

I 0 M̊V I(M̊II)
−1

0 I M̊EI(M̊II)
−1

0 0 I

195

196

where M̊EI =
∑
K∈T ΛK,EM̂EIΛ

T
K,I with M̊II , M̊V I defined analogously. Observe197

that if the physical elements K are all affine images of the reference element, then198

M̊II , M̊EI will coincide with the global mass matrix blocks MII ,MEI .199

The following identity will prove useful in deducing the action of P−1:200

Lemma 3.2. For any element K ∈ T , we have that201

ΛKQ̂ = QΛK .(3.4)202203

Proof. It is clear that ΛKQ̂~f = QΛK
~f if ~f = [~fV ; ~fE ;~0] since, in that case,204

ΛKQ̂[~fV ; ~fE ;~0] = [ΛK,V
~fV ; ΛK,E

~fE ;~0] = QΛK [~fV ; ~fE ;~0].205206

It remains to show the relation holds for vectors of the form [~0;~0; ~fI ]. Observe that207

the interior basis functions are supported on one and only one element. Hence M̊−1
II =208 ∑

K∈T ΛK,IM̂
−1
II ΛT

K,I , and ΛT
K,IΛK′,I = δKK′I for K,K ′ ∈ T . Direct computation209

then shows,210

QΛK

 0
0
~fI

 =

M̊V IΛK,IM̂
−1
II
~fI

M̊EIΛK,IM̂
−1
II
~fI

ΛK,I
~fI

 =

ΛK,V M̂V IM̂
−1
II
~fI

ΛK,EM̂EIM̂
−1
II
~fI

ΛK,I
~fI

 = ΛKQ̂

 0
0
~fI

 .211

212
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PRECONDITIONING THE MASS MATRIX 7

In view of Lemma 3.2 and (3.3), we can rewrite P in the form213

P = Q

∑
K∈T

ΛK
|K|
|T |

DΛK

QT .214

215

Moreover, since D is diagonal, we can rewrite216 ∑
K∈T

ΛK
|K|
|T |

DΛK = block diag(DV V ,DEE , M̊II).217

218

where219

DV V =
∑
K∈T

|K|
|T |

ΛK,V D̂V V ΛT
K,V and DEE =

∑
K∈T

|K|
|T |

ΛK,ED̂EEΛT
K,E .220

221

It follows that P is invertible, and the action of P−1 on a global right hand side is222

given by Algorithm 3.2.223

Algorithm 3.2 Preconditioner for Global Mass Matrix

Require: M global mass matrix, ~f residual vector
1: function
2: ~xI := M̊−1

II
~fI

3: ~xE := D−1
EE

(
~fE − M̊EI~xI

)
4: ~xV := D−1

V V

(
~fV − M̊V I~xI

)
5: ~xI := ~xI − M̊−1

II M̊IV ~xV − M̊−1
II M̊IE~xE

6: return ~x := ~xI + ~xE + ~xV
7: end function

The next result complements Theorem 3.1 by showing that P is a uniform pre-224

conditioner for the mass matrix on the entire mesh T :225

Corollary 3.3. There exists a constant C independent of h, p such that226

cond(P−1M) ≤ C.227228

Proof. Bounds (2.2) and a change of variables show that θM̂ ≤ MK ≤ ΘM̂.229

Then by standard sub-assembly and Theorem 3.1230

ĉθP = ĉθ
∑
K∈T

ΛKPKΛT
K ≤

∑
K∈T

ΛKMKΛT
K = M ≤ ĈΘ

∑
K∈T

ΛKPKΛT
K = ĈΘP231

232

where ĉ, Ĉ are the constants from Theorem 3.1. Hence cond(P−1M) ≤ ĈΘ
ĉθ .233

3.3. Cost of Applying the Preconditioner. Line 2 to line 4 of Algorithm 3.2234

all involve inversion of diagonal matrices. Consequently, each interior block can be235

inverted at a cost of 1
2 (p − 1)(p − 2) operations, each edge block at a cost of p − 1236

operations, and the vertex block costs 3|V| operations where |V| is the number of237

vertices in mesh T . The dominant cost of the algorithm lies in the matrix-vector238

multiplication Mpre
EI ~xI , which costs O(p3) operations, hence the overall cost of our239

algorithm is O(p3).240
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8 M. AINSWORTH, AND S. JIANG

4. Numerical Examples. In this section, we present results obtained by ap-241

plying Algorithm 3.2 to solve linear algebraic systems arising in some representational242

examples.243

4.1. Condition number on reference triangle. We start by illustrating the244

performance of the preconditioner on the reference element (see Theorem 3.1). In245

Figure 2, we plot the condition number of M̂, the condition number of the diagonally246

scaled mass matrix M̂S where247

M̂S = diag(M̂)−1/2M̂ diag(M̂)−1/2,248249

and the condition number of the preconditioned mass matrix P̂−1/2M̂P̂−1/2. Figure 2250

also shows the results obtained if the vertex functions in the choice of basis is replaced251

by the “full-order” vertex basis functions252

ϕ̈i(x, y) =
(−1)p+1

p
λiP

(1,1)
p−1 (1− 2λi), (x, y) ∈ T253

254

to partially illustrate why the choice bp/2c was made. We will call call the precon-255

ditioned mass matrix constructed using ϕ̈i as P̂−1/2M̈P̂−1/2 It is observed that the256

condition number is no longer constant; see Lemma 6.3 for a complete explanation.257

We note that the mass matrix M̂ and the scaled mass matrix M̂S both exhibit258

algebraic growth with the order p which is typically the case for such basis [3], while,259

by contrast, the preconditioned system P̂−1/2M̂P̂−1/2 remains constant with p as260

predicted by Theorem 3.1 (with an asymptotic value of 24 as p→∞) .

101 102
100

102

104

106

108

1010

1

1

2

4

p

C
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n

d
it

io
n

n
u

m
b

er

κ(M̂)

κ(M̂S)

κ(P̂−1/2M̂P̂−1/2)

κ(P̂−1/2M̈P̂−1/2)

Fig. 2. The condition numbers of M̂, M̂S , P̂−1/2M̂P̂−1/2 and P̂−1/2M̈P̂−1/2 are plotted on
a log-log axis for p = 5, 10, . . . , 95. The algebraic growth of κ(M̂) and κ(M̂S) with p are consistent
with [3], and the boundedness of κ(P̂−1/2M̂P̂−1/2) is predicted in Theorem 3.1. Finally, we note
that the “full-order” vertex basis system κ(P̂−1/2M̈P̂−1/2) exhibits growth.

261

4.2. Condition number on multi-element mesh. We next illustrate Corol-262

lary 3.3 by considering the mesh shown in Figure 3 which consists of 239852 affine263

elements. We construct the global mass matrix M explicitly and use ARPACK to264
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PRECONDITIONING THE MASS MATRIX 9

approximate the extreme eigenvalues of the preconditioned system to a relative toler-265

ance of 10−4. In Table 1, we display the extreme eigenvalues and condition number266

of the preconditioned mass matrix on the multi-element mesh, along with the corre-267

sponding quantities for the preconditioned mass matrix on the reference element. The268

condition numbers on the multi-element mesh are bounded by those on the reference269

element as predicted by Corollary 3.3 for affine elements.

Fig. 3. Plot of the mesh used to illustrate Corollary 3.3; see Table 1 for the results.

270

Table 1
Table to illustrate Corollary 3.3 by comparing the extreme eigenvalues of the global mass matrix

M of the mesh as shown in Figure 3, to the single element case M̂. The eigenvalues are approximated
using ARPACK to a relative tolerance of 10−4 for M and to machine precision for M̂.

Multi-Element Mesh M Single Element M̂
p #DOF λmin λmax λmax/λmin λmin λmax λmax/λmin

3 1084371 0.0518 2.6077 50.341 0.0518 2.6124 50.386
4 1925541 0.0922 2.3033 24.982 0.0920 2.3064 25.061
5 3006563 0.0793 2.9154 36.764 0.0791 2.9198 36.887

4.3. Explicit time-stepping. We now illustrate the use of the preconditioner in271

the numerical solution of the wave-equation where the time stepping scheme requires272

the inversion of the mass matrix at each step. Let u(x, y, t) be defined in Ω = [−7, 7]×273

[−7, 7] be the solution to the wave equation274

utt = ∆u, (x, y) ∈ Ω, t > 0275276

with Neumann boundary condition; the initial condition [8] is277

u(x, y, 0) = 4 tan−1 exp(x+ 1− 2 sech(y + 7)− 2 sech(y − 7)), ut(x, y, 0) = 0.278279

For the spatial discretization, we use a uniform triangulation of the square. For280

the time discretization, we use a 4th order Nyström method [14, p. 285], which281

entails three mass matrix solves per time step; for example, the first substep consists282

of solving283

~un+1
1 := M−1 (−S~un)284285
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10 M. AINSWORTH, AND S. JIANG

where S is the stiffness matrix. For each solve, we use the preconditioned conjugate286

gradient (PCG) with an appropriate initial guess; recall that the error ~ek at iteration287

k of preconditioned conjugate gradient satisfies288

‖~ek‖ ≤

(√
κ− 1√
κ+ 1

)k
‖~e0‖ .(4.1)289

290

where κ is is the condition number of the preconditioned matrix and ~e0 is the error291

of the initial iterate [13, p. 636]. In Table 2, we show the minimum, median and max292

iteration count of PCG over the entire simulation of 10 seconds with ∆t = 0.01.293

Corollary 3.3 and (4.1) guarantees that the iteration count will not increase with294

p or with h refinement. In fact, we note that the median iteration count actually295

decreases as we increase p and refine h. This is due to (4.1) being an estimate which296

only relates the condition number to the error bound, but does not take into account297

the possible improvements from clustering of eigenvalues. Furthermore, the estimate298

does not take into account a good initial iterate, which improves as we increase the299

number of dofs.300

Table 2
Table illustrates the performance of the preconditioned iterative method of the mass matrix at

each time step by displaying the [min, median, max] iteration count of all 3000 PCG solves from
using the Nyström method for a period of 10 seconds with a ∆t = .01 on utt = ∆u in a uniformly
triangulated square. The iteration count does not increase as predicted in Corollary 3.3 and (4.1).

Order 16 Elements 64 Elements 256 Elements
4 [21, 27, 34] [20, 25, 34] [17, 23, 31]
8 [17, 23, 29] [16, 21, 30] [16, 21, 26]
12 [17, 22, 27] [16, 18, 26] [16, 17, 25]
16 [16, 18, 25] [15, 18, 24] [15, 15, 23]
20 [16, 18, 24] [15, 15, 23]

4.4. Implicit time-stepping. Finally, we illustrate the use of the precondi-301

tioner in the solution of the heat equation where the time-stepping scheme requires302

the inversion of a perturbed mass matrix at each step. Let u(x, y, t) be defined in303

Ω = [−1, 1]× [−1, 1] be the solution to the heat equation304

ut = ∆u, (x, y) ∈ Ω, t > 0305306

with Neumann boundary condition; we use a simple initial condition307

u(x, y, 0) = exp(−(x2 + y2)).308309

The time stepping scheme we use is the Crank-Nicolson method:310 (
M +

∆t

2
S

)
~un+1 =

(
M− ∆t

2
S

)
~un311

312

where S is the stiffness matrix. By Schmidt’s inequality [15], there exists a c inde-313

pendent of p, h such that314

0 ≤ S ≤ c p
4

h2
M =⇒ M ≤M +

∆t

2
S ≤

(
1 +

1

2
c∆t

p4

h2

)
M.(4.2)315

316
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The preconditioned system will have condition number of317

κ

(
P−1

(
M +

1

2
∆tS

))
= O

(
∆t

p4

h2

)
.(4.3)318

319

Observe that if we were to use a fully explicit scheme, then the CFL condition320

is ∆t ∼ h2

p4 thanks again to Schmidt’s inequality being sharp. If we use the choice321

∆t ∼ h2

p4 for the implicit scheme, then (4.3) shows that the iteration count will not322

increase as we increase p. In practice however, one generally chooses ∆t ∼ h2

p2 in which323

case (4.3) shows that the condition number will grow at a rate of at most O(p2); hence324

the iteration count will also increase. These conclusions are illustrated in Table 3. In325

the first two columns, we start with an initial iterate of ~0 in each PCG method. In326

the other two columns, we use the solution from the previous time step as the initial327

iterate, which results in drastic decreases in iteration counts.328

We remark (4.3) could be improved to O((1+log2 p)(1+log2(p/h))) by combining329

Algorithm 3.2 with a domain decomposition preconditioner for the stiffness matrix [2]330

but would require a significant increase in computational cost.331

Table 3
Table to illustrate the performance of the preconditioned iterative method to the matrix resulting

from Crank-Nicolson scheme by displaying the [min, median, max] iteration count of all PCG solves
from using Crank-Nicolson for a period of 1 seconds on 16 elements for ut = ∆u in a uniformly
triangulated square. For the latter two columns, the initial guess is the previous time-step. The
behaviors as we increase p is predicted by (4.3).

Initial Iterate: ~0 Initial Iterate: ~un

p ∆t ∼ h2

p4 ∆t ∼ h2

p2 ∆t ∼ h2

p4 ∆t ∼ h2

p2

4 [35, 36, 37] [35, 36, 37] [34, 34, 36] [34, 34, 36]
8 [38, 39, 39] [66, 67, 73] [9, 17, 35] [49, 51, 73]
12 [34, 35, 35] [87, 91, 103] [4, 8, 29] [51, 55, 101]
16 [32, 33, 33] [108, 114, 127] [2, 7, 24] [48, 55, 124]
20 [16, 19, 19] [129, 130, 151] [1, 1, 9] [47, 55, 149]

5. Additive Schwarz Theory. Thanks to Corollary 3.3, the analysis of the332

preconditioner reduces to bounding the condition number on the reference element333

as in Theorem 3.1. Consequently, for the remainder of this article we confine our334

attention to the reference triangle.335

Let X := Pp(T ) be equipped with the standard L2 inner-product denoted by (·, ·)336

with the respective norm denoted by‖·‖, and let XI := H1
0 (T )∩Pp(T ) be the interior337

space equipped with the L2(T ) inner-product. The orthogonal complement of the338

(closed) subspace XI in X is denoted by X̃B , i.e.339

X = XI ⊕ X̃B , XI ⊥ X̃B .(5.1)340341

We begin by exploring the structure of the space X̃B . Let Pp(∂T ) denote the342

space of traces of Pp(T ) on the boundary ∂T of the reference triangle:343

Pp(∂T ) = {u : u = v|∂T for some v ∈ Pp(T )}.(5.2)344345

The next result shows that there is a one-to-one correspondence between X̃B and346

Pp(∂T ).347
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12 M. AINSWORTH, AND S. JIANG

Lemma 5.1. For every u ∈ Pp(∂T ), there exists a unique ũ ∈ X̃B which satisfies348

ũ = u on ∂T , and (ũ, v) = 0 for all v ∈ XI . Furthermore, ũ is a minimal L2 extension349

of u in the sense that for all w ∈ Pp(T ) with w|∂T = u we have ‖ũ‖ ≤‖w‖.350

Proof. Let u ∈ Pp(∂T ) be given. According to (5.2), u is equal to the trace of a351

polynomial in Pp(T ), which we again denote by u. We can construct a ũ ∈ X̃B with352

the claimed properties as follows.353

Let354

uI ∈ XI : (uI , vI) = −(u, vI) ∀vI ∈ XI .355356

Set ũ = u+ uI ; clearly ũ|∂T = u and (ũ, vI) = 0 for all vI ∈ XI ; this gives existence.357

For uniqueness, let w̃ ∈ Pp(T ) : w̃|∂T = u, (w̃, vI) = 0 for all vI ∈ XI , then358

(ũ− w̃, vI) = 0 ∀vI ∈ XI .359360

Hence ũ− w̃ = 0 as ũ− w̃ ∈ XI . The minimal L2 extension property follows from the361

Pythagorean identity.362

We say that ũ is the “minimal L2 extension” or “minimal extension” of u ∈363

Pp(∂T ). Lemma 5.1 shows that ũ is uniquely determined by the boundary values of364

u and the degree of the space.365

We decompose the space X̃B further. Let ϕ̃i and χ̃
(i)
n be the minimal extension,366

constructed as described in Lemma 5.1, of the vertex basis function and edge basis367

function defined in section 2 respectively. Let368

X̃V = span{ϕ̃i : i = 1, 2, 3}369370

and371

X̃Ei = span{χ̃(i)
n : n = 0, . . . , p− 2}, i = 1, 2, 3.372373

By the construction of the basis functions on the boundary and, thanks to (2.1) and374

(5.1), we have375

X = XI ⊕ X̃V ⊕
3⊕
i=1

X̃Ei .(5.3)376

377

Let ~ϕ = [ϕ1;ϕ2;ϕ3] where ϕi are the vertex basis functions with ~ψ defined simi-378

larly for the interior basis functions, and, using the notation of section 2, define379

~̃ϕ = ~ϕ− M̂V IM̂
−1
II
~ψ.(5.4)380381

Then for ~u ∈ R3, we have for all XI 3 w = ~wT ~ψ,382

(~uT ~̃ϕ, w) =
(
~uT ~̃ϕ, ~wT ~ψ

)
=
(
~uT (~ϕ− M̂V IM̂

−1
II
~ψ), ~wT ~ψ

)
383

= ~uTM̂V I ~w − ~uTM̂V IM̂
−1
II M̂II ~w = 0.384385

Hence {ϕ̃1, ϕ̃2, ϕ̃3} ∈ X̃B , and as a consequence forms a basis for X̃V (since ϕ̃i|∂T =386

ϕi|∂T ). A basis for X̃Ei
with i = 1, 2, 3 can be constructed in the same fashion.387

Next, we define the bilinear forms on each subspace in the decomposition (5.3):388

This manuscript is for review purposes only.



PRECONDITIONING THE MASS MATRIX 13

• Interior space XI :389

aI(u,w) := (u,w), u, w ∈ XI .390391

• Vertex space X̃V :392

aV (u,w) :=
1

p4

3∑
i=1

u(vi)w(vi), u, w ∈ X̃V393

394

where v1, v2, v3 are the vertices of T .395

• Edge spaces X̃Ei (i = 1, 2, 3):396

aEi(u,w) :=

p−2∑
n=0

qnµn(u)µn(w), u, w ∈ X̃Ei397

398

with qn defined as in (3.1), and µn is the weighted moment given by399

µn(u) :=
(2n+ 5)(n+ 3)(n+ 4)

32(n+ 1)(n+ 2)

∫ 1

−1

χ(i)
n (x)u(x) dx400

401

where we use a linear parametrization such that γi = [−1, 1].402

The spaces and inner-products defined above give rise to an Additive Schwarz403

Method (ASM) preconditioner [11, 23, 26] whose action on a given residual f ∈ X is404

defined as:405

(i) uI ∈ XI : aI(uI , vI) = (f, vI) ∀vI ∈ XI .

(ii) uV ∈ X̃V : aV (uV , vV ) = (f, vV ) ∀vV ∈ X̃V .

(iii) For i = 1, 2, 3, uEi
∈ X̃Ei

: aEi
(uEi

, vEi
) = (f, vEi

) ∀vEi
∈ X̃Ei

.

(iv) u := uI + uV +
∑3
i=1 uEi is our solution.

406

5.1. Matrix Formulation of the ASM. In practice, it is convenient to refor-407

mulate steps (i)-(iv) in terms of matrix operations.408

1) Recall that XI = span{ψij} and let uI = ~uTI
~ψ where ~ψ is the column vector of all409

the interior basis functions. The matrix form of (i) is410

M̂II~uI = aI(uI , ~ψ) = (f, ~ψ) = ~fI .411412

2) Let uV = ~uTV
~̃ϕ where ~̃ϕ is the basis for X̃V in column form. As ϕ̃i(vj) = δij , we413

have414

1

p4
IV V ~uV = aV (uV , ~̃ϕ) = (f, ~̃ϕ).415

416

Inserting identity (5.4) in the right hand side gives417

(f, ~̃ϕ) = (f, ~ϕ)−MV IM
−1
II (f, ~ψ)418

= ~fV − M̂V IM̂
−1
II
~fI .419420

3) Let uE1
= ~uTE1

~̃χ where ~̃χ is the basis for X̃E1
in column form. By the orthogonality421

properties of P
(2,2)
i (x) in (3.1), the weighted moments in aV (·, ·) of (iii) simplifies422

to µn(χ̃i)µn(χ̃j) = δij , and hence we have423

D̂
(1)
EE~uE1

= aE1
(uE1

, ~̃χ) = (f, ~̃χ).424425

The same reasoning holds for edges γ2, γ3. The right-hand side modification follows426

from 2).427
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14 M. AINSWORTH, AND S. JIANG

4) The vector solution ~xV to step (ii) corresponds to the function ũV := ~xTV
~̃ϕ. Ap-428

plying identity (5.4) again, we have429

ũV = ~xTV

(
~ϕ− M̂V IM̂

−1
II
~ψ
)
.430

431

Therefore, our minimal energy solution contains interior functions of the form432

−M̂−1
II M̂IV ~xV which we have to add back to ~xI . A similar correction term is433

needed for the three edge terms.434

Theorem 5.2. The abstract Additive Schwarz Method defined above corresponds435

to Algorithm 3.1.436

Proof. Steps 1), 2), 3), 4) above corresponds to line 2, line 4, line 3 and line 5437

respectively from Algorithm 3.1.438

5.2. Proof of Theorem 3.1. We apply the standard theory [11, 23, 26] for the439

analysis of additive Schwarz methods to the scenario as described above. In particular,440

we will follow the framework as laid out in [26, §2].441

Lemma 5.3 (Local Stability). For a constant C independent of p, each of our442

local bilinear forms are coercive in the sense that443

(u, u) = aI(u, u) ∀u ∈ XI ,444

(u, u) = aEi
(u, u) ∀u ∈ X̃Ei

, i = 1, 2, 3,445

(u, u) ≤ 3CaV (u, u) ∀u ∈ X̃V .446447

Proof. The first equality holds as XI is a subspace of X and inherits the inner-448

product. For X̃Ei
, identity (6.2) of Lemma 6.4 gives us the equality449

aEi
(u, u) =

p−2∑
n=0

qnµn(u)2 =‖u‖2 .450

451

Finally, for u ∈ X̃V , we rewrite u =
∑3
i=1 u(vi)ϕ̃i. Using the triangle inequality and452

the estimate ‖ϕ̃i‖2 ≤ Cp−4 of Lemma 6.3, we have453

‖u‖2 ≤ 3

3∑
i=1

∥∥u(vi)ϕ̃i
∥∥2 ≤ 3C

p4

3∑
i=1

|u(vi)|2 = 3CaV (u, u).454

455

The next result gives an estimate for the largest eigenvalue, and is an immediate456

consequence of the triangle inequality and Lemma 5.3:457

Lemma 5.4. There exists a constant C independent of p such that for all u ∈ X,458

the unique decomposition459

u = uI + uV +

3∑
i=1

uEi
,460

461

with uI ∈ XI , uV ∈ X̃V , uEi
∈ X̃Ei

, satisfies462

‖u‖2 ≤ C

aI(uI , uI) + aV (uV , uV ) +

3∑
i=1

aEi
(uEi

, uEi
)

 .463

464
465
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The final ingredient is the following bound for the smallest eigenvalue of the additive466

Schwarz operator, whose proof is the subject of section 6:467

Theorem 5.5 (Stable Decomposition). For all u ∈ X, with the decomposition468

as in Lemma 5.4, there exists a constant C independent of p such that469

aI(uI , uI) + aV (uV , uV ) +

3∑
i=1

aEi
(uEi

, uEi
) ≤ C‖u‖2 .470

471

The proof of Theorem 3.1 is now an immediate consequence of Lemmas 5.3 and 5.4472

and Theorem 5.5 thanks to Theorem 2.7 of [26].473

6. Technical Lemmas. In this section, we present the technical lemmas that474

were used in the proof of Theorem 3.1. For notational purposes, we let ‖·‖ω define475

the L2-norm over a domain ω, and we shall omit the subscript in the case ω = T the476

reference element.477

We begin with a bound relating the vertex values of a polynomial to its L2 norm478

over the triangle. The constant appearing in Lemma 6.1 is the best one possible; a479

related result was proved in [27].480

Lemma 6.1. For u ∈ Pp(T ), we have that481

max
i∈{1,2,3}

|u(vi)| ≤
1

2
√

2
(p+ 1)(p+ 2)‖u‖ .482

483

Proof. For 0 ≤ i, j, i+ j ≤ p define484

Ψij(x, y) =

√
(2i+ 1)(i+ j + 1)

2
P

(0,0)
i (ξ)

(
1− η

2

)i
P

(2i+1,0)
j (η),(6.1)485

486

where ξ = 2(1+x)
1−y − 1 and η = y [16, §3]. These functions form an orthonormal basis487

for Pp(T ). Hence, u ∈ Pp(T ) can be written in the form u =
∑
i+j≤p uijΨij and488

‖u‖2 =
∑
i+j≤p u

2
ij . It suffices to prove the inequality in the case of vertex (−1,−1).489

Using Cauchy-Schwarz gives490

|u(−1,−1)|2 =

 ∑
i+j≤p

(−1)i+juij

√
(2i+ 1)(i+ j + 1)

2

2

491

≤
∑
i+j≤p

u2
ij

∑
i+j≤p

(2i+ 1)(i+ j + 1)

2
=

1

8
(p+ 1)2(p+ 2)2‖u‖2 .492

493

Next, we prove an equality needed to bound the minimal extension of the vertex494

functions.495

Lemma 6.2. Define496

ξp(x) =
(−1)p+1

p(p+ 1)
P ′p(x)(1− x) =

(−1)p+1

p

1− x
2

P
(1,1)
p−1 (x), x ∈ [−1, 1]497

498

where Pp is the Legendre polynomial. Then499 ∥∥ξp∥∥2

[−1,1]
=

4

(p+ 1)(2p+ 1)
.500

501
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16 M. AINSWORTH, AND S. JIANG

Proof. We note that ξp(−1) = 1, ξp(1) = 0, and ξp(xi) = 0 where xi, i = 2, . . . , p502

are the roots of P ′p(x). Hence, using the (p+1) point Gauss-Lobatto quadrature gives503 ∫ 1

−1

ξ2
p(x) dx = w1 +

p∑
i=2

wiξ
2
p(xi) + E504

505

where E is the error term506

E = − (p+ 1)p322p+1[(p− 1)!]4

(2p+ 1)[(2p)!]3
d2p

dx2p ξ
2
p(x)

∣∣
x=η

, η ∈ [−1, 1].507
508

for some η ∈ [−1, 1]. Direct calculation shows that E = − 2
(2p+1)(p+1)p which, along509

with the fact that w1 = 2
p(p+1) , gives the result claimed.510

Using the function defined in Lemma 6.2, we can bound the minimal extensions of511

the vertex functions.512

Lemma 6.3. The minimal extension of the vertex basis function of degree p sat-513

isfies the bound514

c

p4
≤‖ϕ̃i‖2 ≤

C

p4
515
516

where c and C are positive constants independent of p.517

Proof. Without loss of generality, assume that i = 1 which corresponds to v1 =518

(−1,−1) of the reference triangle T . Using the minimal L2 property of ϕ̃1, and519

Qbp/2c ⊂ Pp where Qr = {xαyβ : 0 ≤ α, β ≤ r}, gives:520

‖ϕ̃1‖2 = min
u=ϕ1 on ∂T

u∈Pp

‖u‖2 ≤ min
u=ϕ1 on ∂T
u∈Qbp/2c

‖u‖2 .521

522

Consider the polynomial ζr ∈ Q2r defined by523

ζr(x, y) = ξr(x)ξr(y)− ξr(−x)ξr(−y)524525

where ξr(x) is defined in Lemma 6.2. By construction, ζbp/2c = ϕ1 on ∂T , and526 ∥∥∥ζbp/2c∥∥∥2

=
4(2bp/2c − 1)

bp/2c2(bp/2c+ 1)2(2bp/2c+ 1)
≤ C

p4
527

528

which proves the upper bound.529

The lower bound is an immediate consequence of Lemma 6.1 (choosing v = ϕ̃i).530

Remark. The bp/2c order on the vertex functions is crucial here to guarantee531

that Qbp/2c is a smaller space than Pp. Using p as the order on the Legendre polynomial532

will result in log-like growth rather than a uniform bound on the condition number;533

see Figure 2.534

The next result gives an explicit expression for the norm of a minimal extension535

of an edge function:536

Lemma 6.4. Let u ∈ Pp(γ) be a polynomial on edge γ ⊂ ∂T , which vanishes at537

the endpoints, be written in the form538

u(x) = (1− x2)

p−2∑
i=0

wiP
(2,2)
i (x),539

540
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where x ∈ [−1, 1] is a parametrization of γ. Then the norm of the the minimal energy541

extension ũ ∈ Pp(T ), satisfying ũ = 0 on ∂T \ γ and u = ũ on γ, is given by542

‖ũ‖2 =

p−2∑
i=0

2µiw
2
i

(p+ i+ 4)(p− i− 1)
(6.2)543

544

where µi =
∫ 1

−1
(1− x2)2P

(2,2)
i (x)2 dx = 32

2i+5
(i+1)(i+2)
(i+3)(i+4) .545

Proof. Without loss of generality, take the edge to be γ = {(x, y) : y = −1,−1 ≤546

x ≤ 1} of the reference triangle. We construct a basis for the space of polynomials547

which vanish on ∂T \ γi and express ũ in the form548

ũ(x, y) = (1− ξ2)

(
1− η

2

)2 ∑
i+j≤p−2

ũijP
(2,2)
i (ξ)

(
1− η

2

)i
P

(2i+5,0)
j (η)549

550

for suitable coefficients {ũij ∈ R : i+ j ≤ p− 2} where ξ = 2(1+x)
1−y − 1 and η = y. The551

L2 norm to minimize can be expressed in terms of {ũij}552

‖ũ‖2 =

∫ 1

−1

∫ 1

−1

ũ2(x, y)

(
1− η

2

)
dηdξ =

∑
i+j≤p−2

ũ2
ijµiνij553

554

where νij =
∫ 1

−1

(
1−η

2

)2i+5

P
(2i+5,0)
j (η)2 dη = 1

i+j+3 and µi as defined in the lemma555

statement. The requirement for ũ = u on γ means that556

ũ(x,−1) = (1− x2)
∑

i+j≤p−2

(−1)j ũijP
(2,2)
i (x) =⇒ wi =

p−2−i∑
j=0

(−1)j ũij .557

558

The Cauchy-Schwarz inequality gives559

w2
i ≤

p−2−i∑
j=0

ν−1
ij

p−2−i∑
j=0

ũ2
ijνij

 =
1

2
(p− i− 1)(p+ i+ 4)

p−2−i∑
j=0

ũ2
ijνij(6.3)560

561

with equality if there exists a constant λ, such that for all j ∈ [0, p−2− i] and fixed i,562

such that (−1)j ũijν
1/2
ij = λν

−1/2
ij , or equally well, uij = (−1)jλ(i+ j+ 3). The choice563

λ = wi∑p−2−i
j=0 i+j+3

gives wi =
∑p−2−i
j=0 (−1)j ũij .564

Direct computation reveals that565

‖ũ‖2 =

p−2∑
i=0

µi

p−2−i∑
j=0

ũ2
ijνij =

p−2∑
i=0

µiw
2
i

1
2 (p− i− 1)(p+ i+ 4)

566

567

and the result follows.568

The following discrete weighted Hardy’s inequality will prove useful:569

Lemma 6.5. Let {vi}pi=0 ∈ R satisfy
∑p
i=0,even vi = 0 and

∑p
i=1,odd vi = 0. Then570

there exists a constant C independent of p such that571

p∑
i=2

S̃2
i

(i− 1)2(2i+ 1)(i+ p+ 2)(p− i+ 1)
≤ C

p∑
i=0

v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1)

(6.4)

572

573
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where574

S̃i =

{
|v0|+ |v2|+ · · ·+ |vi−2| if i even

|v1|+ |v3|+ · · ·+ |vi−2| else
.(6.5)575

576

Proof. We prove the inequality in the case where all the coefficients with odd577

indices vanish. Hardy’s inequality for weighted sums states that for non-negative578

ak, bn, cn,579

∞∑
n=1

 n∑
k=1

ak

2

bn ≤ C2
∞∑
n=1

a2
ncn(6.6)580

581

with C ≤ 2
√

2 [17, p. 57] given supn∈N

(∑∞
k=n bk

∑n
k=1 c

−1
k

)1/2

< ∞. Choosing582

ak = |v2(k−1)| for k = 1, . . . , bp/2c and bn, cn for n = 1, . . . , bp/2c to be583

cn =
1

(4n− 3)(2n+ p)(p− 2n+ 3)
,584

bn =
1

(2n− 1)2(4n+ 1)(2n+ p+ 2)(p− 2n+ 1)
585
586

with remaining indices chosen to be ai, bi = 0 and ci = 1 in (6.6) gives the required587

estimate. A similar argument can be used to obtain the estimate when the coefficients588

with even indices vanish. The desired estimate then follows by combining the two589

cases.590

The next result gives a bound on the norm of the minimal extension of a polyno-591

mial supported on a single edge of a triangle:592

Lemma 6.6. Let u ∈ Pp(T ), such that u(vi) = 0 for vi the vertices of T . Let γ be593

any edge of T , and let U ∈ Pp(∂T ) such that U |γ = u|γ and U = 0 on the remaining594

two edges. Let Ũ denote the minimal L2 extension of U , then there exists a constant595

C independent of p such that596 ∥∥∥Ũ∥∥∥ ≤ C‖u‖ .597
598

Proof. Without loss of generality, we assume γ = {(x, y) : y = −1,−1 ≤ x ≤ 1}599

and let Ψij be given by (6.1). Since {Ψij}0≤i,j,i+j≤p forms a basis, we may write600

u =
∑
i+j≤p uijΨij , and denote601

f = u|γ =
∑
i+j≤p

(−1)juij

√
(2i+ 1)(i+ j + 1)

2
P

(0,0)
i (x).602

603

Our technique is to express f as a sum of (1− x2)P
(2,2)
i , i = 0, . . . , p− 2, and to then604

use Lemma 6.4 to calculate
∥∥∥Ũ∥∥∥. Define vi =

∑p−i
j=0(−1)juij

√
(2i+1)(i+j+1)

2 , then in605

order to use Lemma 6.4, we seek coefficients wi such that606

p∑
i=0

viP
(0,0)
i (x) = (1− x2)

p−2∑
i=0

wiP
(2,2)
i (x).607

608
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Observe that since u vanishes at the vertices of T , we have u(±1,−1) = 0, which609

in turn implies
∑p
i=0 vi = 0 and

∑p
i=0(−1)ivi = 0, or equally well610

p∑
i=0,even

vi = 0,

p∑
i=1,odd

vi = 0.(6.7)611

612

Consequently, we can rewrite f as613

f =

p∑
i=2,even

(P
(0,0)
i − P (0,0)

i−2 )Si +

p∑
i=3,odd

(P
(0,0)
i − P (0,0)

i−2 )Si614

615

where616

Si = vi + vi+2 + · · ·+

{
vp

vp−1

=

{
v0 + · · ·+ vi−2 if i even

v1 + · · ·+ vi−2 else
617

618

depending on the parity.619

Using the identity620

− 1− x2

2(n− 1)

(
(n+ 1)(n+ 2)

2n
P

(2,2)
n−2 −

n− 1

2
P

(2,2)
n−4

)
= P (0,0)

n − P (0,0)
n−2621

622

which follows from identities (22.7.15) to (22.7.19) from [1], we have623

p∑
i=2

(
− (i+ 1)(i+ 2)

4i(i− 1)
P

(2,2)
i−2 +

1

4
P

(2,2)
i−4

)
Si =

p−2∑
i=0

wiP
(2,2)
i ,624

625

and we deduce that wi = Si+4

4 − (i+1)(i+2)
4i(i−1) Si+2. Writing Si+4 = Si+2 − vi+2, we have626

wi = −vi+2

4
− 5 + 2i

2(i+ 1)(i+ 2)
Si+2.627

628

The Cauchy-Schwarz inequality gives629

v2
i ≤

p−i∑
j=0

u2
ij

p−i∑
j=0

(2i+ 1)(i+ j + 1)

2
=

(2i+ 1)(i+ p+ 2)(p− i+ 1)

4

p−i∑
j=0

u2
ij .630

631

which in turn gives632

p∑
i=0

4v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1)
≤

p∑
i=0

p−i∑
j=0

u2
ij =‖u‖2 .(6.8)633

634

Using Lemma 6.4 and the inequality w2
i ≤

v2i+2

8 + 1
2k

2
i S

2
i+2 where ki = 5+2i

2(i+1)(i+2) ,635

we have636 ∥∥∥Ũ∥∥∥2

=

p−2∑
i=0

2µiw
2
i

(p+ i+ 4)(p− i− 1)
637

≤ C

p−2∑
i=0

v2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5)
+

p−2∑
i=0

k2
i S

2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5)

 .638

639
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Turning to the first term, thanks to (6.8), we have640

p−2∑
i=0

v2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5)
≤ C

p∑
i=0

4v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1)
≤ C‖u‖2 .641

642

For the second term, we first denote643

S̃i =

{
|v0|+ · · ·+ |vi−2| if i even

|v1|+ · · ·+ |vi−2| else
644

645

so that S2
i ≤ S̃2

i . We first note that ki ≤ 2
i+1 and change the index of the summation,646

then using Lemma 6.5 and (6.8), we obtain647

p∑
i=2

S2
i

(i− 1)2(2i+ 1)(p+ i+ 2)(p− i+ 1)
648

≤
p∑
i=2

S̃2
i

(i− 1)2(2i+ 1)(p+ i+ 2)(p− i+ 1)
649

≤ C
p∑
i=0

v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1)
≤ C‖u‖2650

651

and the result follows as claimed.652

Finally, we are in a position to give the proof of Theorem 5.5:653

Proof. The first step is to construct a suitable decomposition for u ∈ X. Let654

uV =

3∑
i=1

u(vi)ϕ̃i ∈ XV655

656

be the interpolant to u at the vertices using the minimal L2 vertex functions.657

Consequently (u − uV )|∂T ∈ Pp(∂T ) vanishes at the element vertices, and can658

therefore be written in the form659

u− uV |∂T = U1 + U2 + U3660661

where Ui ∈ Pp(∂T ) is supported on edge γi. We then let662

uEi
∈ XEi

663664

be the minimal L2 extension of Ui into the triangle. It follows that665

u− uV −
3∑
i=1

uEi = uI ∈ XI666

667

Thus u = uV +
∑3
i=1 uEi

+ uI is a decomposition of u. It remains to show the668

decomposition is uniformly bounded.669

Firstly, by Lemma 6.1:670

aV (uV , uV ) =
1

p4

3∑
i=1

u(vi)
2 ≤ 3

p4
max

i∈{1,2,3}
u2(vi) ≤ 3C‖u‖2 .(6.9)671

672
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For the edge contributions, we use Lemma 6.6 to bound673

aEi
(uEi

, uEi
) =‖uEi

‖2 ≤ C‖u− uV ‖2 ≤ 2C
(
‖u‖2 +‖uV ‖2

)
,674

675

and then use the estimate‖uV ‖2 ≤ CaV (uV , uV ) from Lemma 5.3 and (6.9), to deduce676

‖uV ‖2 ≤‖u‖2 and hence aEi
(uEi

, uEi
) ≤ C‖u‖2.677

Finally, as uV +
∑3
i=1 uEi

∈ X̃B , Lemma 5.1 gives us
(
uI , uV +

∑3
i=1 uEi

)
= 0,678

hence679

aI(uI , uI) =‖uI‖2 ≤‖uI‖2 +

∥∥∥∥∥∥uV +

3∑
i=1

uEi

∥∥∥∥∥∥
2

=‖u‖2 ,680

681

and our result follows.682
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