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PRECONDITIONING THE MASS MATRIX FOR HIGH ORDER
FINITE ELEMENT APPROXIMATION ON TRIANGLES*

MARK AINSWORTH! AND SHUAI JIANGT

Abstract. The problem of preconditioning the p-version mass matrix on meshes of (possibly
curvilinear) triangular elements in two dimensions is considered. Through a judicious choice of
hierarchical basis, it is shown that a preconditioner involving only diagonal solves on the vertices,
edges and element interiors gives rise to a preconditioned system for which the condition number is
bounded independently of the polynomial order p and the mesh size h. The analysis is performed
in the framework of an Additive Schwarz Method and requires the construction of new polynomial
extension theorems, similar to those that are used in the analysis of the stiffness matrix. However, in
the case of the mass matrix it is necessary to look at traces and extensions from the space Ly (rather
than H') and to make sense of the traces of polynomials regarded as functions in Lo. Numerical
examples are presented illustrating the performance of the algorithm.

Key words. preconditioning mass matrix, polynomial extension theorem, high order finite
elements
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1. Introduction. High order finite element methods have been shown, both in
theory and in practice [12,21,25], to deliver exponential rates of convergence for large
classes of problems, including cases where the solutions exhibit boundary layers and
singularities [6,21]. The choice of basis function to be used in the implementation
has proved rather problematic from the outset when it was quickly realised that
the natural, Lagrange or Peano polynomial, basis gave rise to exponential growth of
the condition number [25]. This led to the use of hierarchic bases which, although
considerably better conditioned than the Peano basis, still gave condition numbers
that grow algebraically with the polynomial order p [3,18,19] e.g. as O(p*?) in
d-spatial dimensions.

Whilst a judicious choice of basis can help ameliorate ill-conditioning, the con-
struction of an efficient preconditioner offers much better prospects. The domain
decomposition preconditioner developed by Babuska et al. [5] was shown to reduce
the growth of the condition number of the stiffness matrix to O(1 + log? p) in two
dimensions. Subsequent work extended these ideas to include preconditioners for the
stiffness matrix in higher dimensions, hp-version finite element methods, boundary
element methods, along with the use of more efficient approximate solvers on the
subspaces [2,4,9,10,20]. Despite the rather extensive work on the analysis and con-
struction of preconditioners for the stiffness matriz, virtually no attention has been
paid to the question of preconditioning the mass matriz.

One might reasonably ask if there really is an issue given that the mass matrix for
the standard h-version finite element method is well-known to be uniformly bounded
independent of the mesh size h? Nevertheless, just as for the stiffness matrix, the
condition number for the mass matrix for the p-version finite element method is
known to grow algebraically with the polynomial order [3,18,19].

The need to solve linear systems involving the mass matrix is easy to underes-
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2 M. AINSWORTH, AND S. JIANG

timate. Explicit (and also implicit) time discretisation schemes immediately spring
to mind, and require the inversion of the mass matrix at each time step. However,
the need to efficiently invert the mass matrix also arises in less obvious situations
including the construction of preconditioners for mixed finite element discretisation
of the Stokes equations [22]. The linear systems that arise from singularly perturbed
problems and plate models for thin elastic bodies have the structure of a mass matrix
plus a small multiple of the stiffness matrix meaning, to a large extent, that the sys-
tem essentially behaves like a mass matrix. It is easy to forget that the mass matrix
(or a lumped version) is routinely used as a smoothener for multigrid solvers [7] for
the h-version, without causing any eyebrows to be raised, thanks to the fact that the
mass matrix is uniformly bounded for the h-version.

The construction of efficient, domain decomposition type preconditioners for the
p-version mass matrix is of practical interest, particularly when one turns to appli-
cations beyond Poisson type problems, and this has not escaped the attention of the
community completely. Early (unpublished) work of Smith [24] looked at precondi-
tioners for the p-version mass matrix quadrilateral elements in two dimensions using
tensor product type arguments.

The present work considers the problem of preconditioning the p-version mass
matrix on meshes of (possibly curvilinear) triangular elements in two dimensions.
Through a judicious choice of hierarchical basis, it is shown that a preconditioner in-
volving only diagonal solves on the vertices, edges and element interiors gives rise to
a preconditioned system for which the condition number is bounded independently of
the polynomial order p and the mesh size h. The analysis is performed in the frame-
work of an Additive Schwarz Method and requires the construction of new polynomial
extension theorems, similar to those that were derived in the analysis of the stiffness
matrix in [5]. However, in the case of the mass matrix it is necessary to look at traces
and extensions from the space Lo (rather than H') and to make sense of the traces
of polynomials regarded as functions in L.

The remainder of the paper is organized as follows. In section 2, we define the
basis functions on a simplex. In section 3, we present the preconditioner, analyze
its cost, and state the main theorem. In section 4, we present several illustrative
numerical examples. In section 5, we use domain decomposition techniques to prove
the key theorems. We conclude with section 6 containing the technical lemmas and
estimates required.

2. Basis Functions.

2.1. Basis functions on a triangle. Let T be the reference triangle in R? with
vertices v; = (=1, —1),v3 = (1, —1),v3 = (=1, 1), and the edges of T' be denoted by ~;
for i = 1,2, 3 such that ~; is opposite of vertex v;; see Figure 1. Let p > 3 be a given
integer which is fixed throughout, and let P,(7T") = span{z®y® : 0 < o, B, a + 8 < p}
denote the space of polynomials of total degree p on T'. Finally, for i = 1,2,3 we let
Ai € P1(T) be the barycentric coordinates on T, i.e. the unique polynomial such that
)\i (’Uj) = 61]

The classical Jacobi polynomials on [—1, 1] are denoted by ple? ), where n is the
order of the polynomial and «, 8 > —1 are weights [1]. These will be used to define
the basis functions on triangle T' as follows:
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PRECONDITIONING THE MASS MATRIX 3
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Fic. 1. Figure of reference triangle T

Interior Basis Functions. The orthogonalized, interior modified principal
functions [16] are given by

1—s1+45 (22 T—t\""" 14t (2131
vple) = RV (F50) R
for 1 <i,5,i+j <p-—1, where

A2 — A
= =2\ — 1
TN s

and A1, A2, A3 are the barycentric coordinates of (x,y) € T. Note that {t;;} vanishes
on the boundary of T' and gives a basis for P,(T) N H(T).

Edge Basis Functions. On edge 1, we define
X (@,y) = M Xs PP (A3 — o)

forn=0,...,p— 2 with (z,y) € T. We note that the factor AoA3 means that XS)
vanishes on edges 72 and 3. The basis functions XSLQ), X’El3) on edges 72, v3 are defined

in an analogous fashion. The key property dictating this particular choice of basis is
that Xsf)\% =(1- 52)P,(L2’2)(s) where s € [—1, 1] is a parametrization of ;.

Vertex Basis Functions. On vertex v; for i = 1,2, 3, we define

(—1)lp/2)+1 (L1
(pl(xay) = WAiPLP}QJ*1(1 - 2)\1)3 (CL’,y) eT.

Note that ¢;(v;) = ;5. One could replace |p/2| by p and still obtain a basis for
P,(T"). The reason for choosing |p/2| rather than simply p will become clear later
(see subsection 4.1 and the remark after Lemma 6.3).

It is not difficult to verify that the functions defined above are linearly indepen-
dent. Moreover, there are 3 dofs from the vertices, 3p — 3 dofs from the edges and
1 (»® — 3p+2) from the interior of 7 which sums to 2(p + 1)(p + 2) = dimP,(T).
Hence, we have a basis for P,(T") with the following decomposition:

3
(2.1) P,(T) = span{e; }i_, & @D span{x\' Y225 @ span{vi; h1<i jiivj<p—1-
i=1
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4 M. AINSWORTH, AND S. JIANG

We enumerate the basis functions in the following order:

1. the vertex functions {p;}3_,,
2. the edge functions {x4 1222, {x\? P2 (e
3. the remaining dofs correspond to {1;;}1<i jit+j<p—1s

then the mass matrix on 7" will have a block form
R 1\:/-[VV 1\:/11/13 1\:/—[VI
M = Mgy Mg Mg;
My Mg Mg

Likewise, the element load vector f and solution vector & take the partitioned forms

R PA Ty
f=\feg|, and = |Zg
fi Z1

2.2. Basis functions on partitions. Let 2 be a bounded two-dimensional
domain, and let 7 be a triangulation of 2. We assume that each element K € T
is the image of the reference element T under a bijective map Fx (not necessarily
linear) such that the Jacobian DFg is bounded uniformly in the sense that there
exists non-negative constants 6, © such that for all K € T there holds

(2.2) 0|K| < |DFx| < O|K].

We remark that this condition places no constraints on the shape regularity of the
mesh, and, in particular, allows for “needle” elements.

The basis functions on each element K € 7 are defined in terms of the basis
functions on the reference element in the usual way; for example, the first vertex
basis functions is defined as

o151 (x) = o1 (Fx' (2)).

Thanks to the decomposition of the basis into interior contributions and boundary
contributions that are only supported on a single entity (i.e. edge or vertex), C° global
conformity is enforced by matching the corresponding edge and vertex functions.

3. Preconditioner and Statement of Main Theorem.

3.1. Preconditioning on the reference element. We begin by constructing
a preconditioner for the mass matrix M on the reference element 7. Let I3 be the
3 x 3 identity matrix, Dyy = p%Ig and

Dy = block diag(DLL, DEL DE))

where f)%)E,z =1,2,3 is the diagonal matrix f)%)E = diag(g;), with

L 2 ' _22pD 02 g
S (P g Y /Jl yre)d
64(5 +1)(5 +2)

(p+4+4)p—3+1)(25+5)(F +3)(J+4)

(3.1)
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PRECONDITIONING THE MASS MATRIX 5

for j =0,...,p—2. We define our preconditioner, in the case of the reference element,
in terms of its action when applied to a vector f in Algorithm 3.1.

Algorithm 3.1 Preconditioner on the Reference Element

Require: 1\7[, f as partitioned in section 2
1: function

—

2: Ty = Mfllfl > Interior solve
3: Tg = DE}E (fE — MEI:E’I) > Edges solve
4: Ty = D(,%/ (fv - MV[:E'I) > Vertices solve
5: Ty =21 — M;}MIV@'V — M;}MIE;EE > Interior correction
6: return ¥ := ¥; + g + Ty

7: end function

—

Direct manipulation reveals that Algorithm 3.1 defines a linear mapping f —
Z:=P71f where P~' =Q TD1Q !,

R I 0 MVIM;[ Dyyv 0 0
Q=10 I MEIM;; , and D := 0 Dgge 0
00 I 0 0 N

Clearly, Q and D are invertible, hence
(3.2) P =QDQT.

We now state a key result:

_ THEOREM 3.1. There exists constants ¢ and C independent of p such that P <
M < CP.' Hence,

Q>‘ Q>

cond(P~IM) <

The proof of Theorem 3.1 is postponed to section 5.

3.2. Preconditioning on a mesh. The global mass matrix M on a partition
T is obtained by the standard finite element sub-assembly procedure

M = Z AxMgAL
KeT

where M is the element mass matrix, and Ax the local assembly matrix. For the
global mass matrix, we assume the dofs are numbered in a similar fashion to the one
used on a single element, viz.:
1. vertex basis dofs are (first in any order),
2. edge basis dofs grouped by the edge they are supported on, and ordered by
the index on the Jacobi polynomial,
3. interior basis dofs grouped by the element on which they are supported.

IWe use the notation that A < B implies B — A is semi-positive definite.

This manuscript is for review purposes only.



179

180

181

182

183

184

185

186

187

188

189

190

191

192

193
194

6 M. AINSWORTH, AND S. JIANG

Thanks to (2.2), it follows that
K| ~ K| _~
cuM<MK<CuM VK eT

where the constants ¢ and C' depend only on 6§ and ©. By the same token, we define
a local preconditioner on K in terms of P

Klp _ IElapaT
~ P = —1QDQ
7]

(3.3) Px =T

where the second equality follows from (3.2). The global preconditioner P is then
obtained using sub-assembly to give:

P= ) AxPgA%L.
KeT

Let the local assembly matrix A be written in block form
Axyv
Ak = |AkE
Ak 1

where the blocks correspond to the vertex, edge and interior basis functions on element
K, and let

Q=

O O -
O - O

where MEI = ZKET AK’EI\A/IEIA?I with MII, MVI defined analogously. Observe
that if the physical elements K are all affine images of the reference element, then
1\7111, MEI will coincide with the global mass matrix blocks M;;, Mg;.

The following identity will prove useful in deducing the action of P~1:

LEMMA 3.2. For any element K € T, we have that
(3.4) AxQ=QAx.

Proof. 1t is clear that AKQf: QAKfif f: [fv; fE; 6] since, in that case,
AxQ[fv: fe;0) = [Axyv fvi Ak pfE: 0] = QAk[fv; ;0]

It remains to show the relation holds for vectors of the form [0; 0; f}] Observe that

the interior basis functions are supported on one and only one element. Hence M;II =

dokeT AK’[I\A/I;}A%I, and A};JAK/,I = 0g kI for K, K" € T. Direct computation

then shows,

0 1\:/IV1AK,11\:/If11Ji} AK,VI\:/IVII\:/I;[1J§ 10
QAk | 0] = MEIAKJI\_{I[_[l fr] = AK,EMEIIYII_[l frl =AxQ |0 }. ]
I1 A rfr A 1fr 1

This manuscript is for review purposes only.
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PRECONDITIONING THE MASS MATRIX 7

In view of Lemma 3.2 and (3.3), we can rewrite P in the form

K| T
P=Q ZAK|T|DA QT.
KeT

Moreover, since D is diagonal, we can rewrite
> AK DAK = block diag(Dy v, Dgg, M;).
KeT

where

Z ||T Ak VDVVAK v and Dgg = Z ||T| Ag EDEEAKE
KeT KeT

It follows that P is invertible, and the action of P! on a global right hand side is
given by Algorithm 3.2.

Algorithm 3.2 Preconditioner for Global Mass Matrix

Require: M global mass matrix, f residual vector
1: function

- —1 7
2: xrr = MII T

- —1 g ° -
3: TE _DE'E( E—ME].’E[)

S ° =
4: Ty = DVV (fv — MVILL'[)

Y o oo N o 4o .
5: Ty = xI_M[IMIVxV_M][MIExE
6: return ¥ := ¥; + g + Ty

7: end function

The next result complements Theorem 3.1 by showing that P is a uniform pre-
conditioner for the mass matrix on the entire mesh 7

COROLLARY 3.3. There exists a constant C' independent of h,p such that
cond(P™'M) < C.

Proof. Bounds (2.2) and a change of variables show that OM < My < OM.
Then by standard sub-assembly and Theorem 3.1

P = é6 Z APrAL < Z AxMgAL =M < CO Z AP AL = CoP
KeT KeT KeT

where ¢, C are the constants from Theorem 3.1. Hence cond(P~1M) < Cég). a

3.3. Cost of Applying the Preconditioner. Line 2 to line 4 of Algorithm 3.2
all involve inversion of diagonal matrices. Consequently, each interior block can be
inverted at a cost of %(p — 1)(p — 2) operations, each edge block at a cost of p — 1
operations, and the vertex block costs 3|V| operations where |V| is the number of
vertices in mesh 7. The dominant cost of the algorithm lies in the matrix-vector
multiplication Mprff 7, which costs O(p?) operations, hence the overall cost of our
algorithm is O(p®).

This manuscript is for review purposes only.
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8 M. AINSWORTH, AND S. JIANG

4. Numerical Examples. In this section, we present results obtained by ap-
plying Algorithm 3.2 to solve linear algebraic systems arising in some representational
examples.

4.1. Condition number on reference triangle. We start by illustrating the
performance of the preconditioner on the reference element (see Theorem 3.1). In
Figure 2, we plot the condition number of M, the condition number of the diagonally
scaled mass matrix Mg where

Mg = diag(M)~/2M diag(M)~Y/2,
and the condition number of the preconditioned mass matrix P-12MP-1/2, Figure 2
also shows the results obtained if the vertex functions in the choice of basis is replaced
by the “full-order” vertex basis functions

(_1)p+1

(Pi(w7y) = Azpéii)(l - 2)\i)7 (.’)37y) erT
to partially illustrate why the choice |p/2] was made. We will call call the precon-
ditioned mass matrix constructed using ¢; as P~1/2MP~1/2 It is observed that the
condition number is no longer constant; see Lemma 6.3 for a complete explanation.
We note that the mass matrix M and the scaled mass matrix MS both exhibit
algebraic growth with the order p which is typically the case for such basis [3], while,
by contrast, the preconditioned system P~1/2MP~!/2 remains constant with p as
predicted by Theorem 3.1 (with an asymptotic value of 24 as p — o0) .

T T T T T N
—— K(M)
1010 - 1l k(M)
) e R(BYNIP )
< 10 44 1 k@R
=
a
= 108 2
Q
E 10t :
O 4 2
102 | A S S KKK ERRNAN N
100 =] | I —
10! 102

p

Fic. 2. The condition numbers of 1\71,1\715, P-12MP~1/2 gnd P~1/2MP~1/2 gre plotted on
a log-log axis for p = 5,10,...,95. The algebraic growth of k(M) and x(Mg) with p are consistent
with [3], and the boundedness of k(P~1/2NMP~1/2) is predicted in Theorem 3.1. Finally, we note
that the “full-order” vertex basis system N(P71/2Mf’71/2) exhibits growth.

4.2. Condition number on multi-element mesh. We next illustrate Corol-
lary 3.3 by considering the mesh shown in Figure 3 which consists of 239852 affine
elements. We construct the global mass matrix M explicitly and use ARPACK to

This manuscript is for review purposes only.



PRECONDITIONING THE MASS MATRIX 9

265 approximate the extreme eigenvalues of the preconditioned system to a relative toler-

266 ance of 1074, In Table 1, we display the extreme eigenvalues and condition number

267 of the preconditioned mass matrix on the multi-element mesh, along with the corre-

268 sponding quantities for the preconditioned mass matrix on the reference element. The

269 condition numbers on the multi-element mesh are bounded by those on the reference
element as predicted by Corollary 3.3 for affine elements.

Fi1c. 3. Plot of the mesh used to illustrate Corollary 3.3; see Table 1 for the results.

TABLE 1
Table to illustrate Corollary 3.3 by comparing the extreme eigenvalues of the global mass matriz
M of the mesh as shown in Figure 3, to the single element case M. The eigenvalues are approzimated
using ARPACK to a relative tolerance of 104 for M and to machine precision for M.

Multi-Element Mesh M Single Element M

p #DOF )\min )\max )\max/)\min )\min )\maX Amax/)\min

3 1084371 | 0.0518 2.6077 50.341 0.0518 2.6124 50.386

4 19255641 | 0.0922 2.3033 24.982 0.0920 2.3064 25.061

5 3006563 | 0.0793 2.9154 36.764 0.0791 2.9198 36.887
271 4.3. Explicit time-stepping. We now illustrate the use of the preconditioner in
272 the numerical solution of the wave-equation where the time stepping scheme requires
273 the inversion of the mass matrix at each step. Let u(x,y,t) be defined in = [-7, 7] x
274 [=7,7] be the solution to the wave equation
373 Uy = Au, (z,y) € Qt >0
277 with Neumann boundary condition; the initial condition [8] is

275 u(z,y,0) =4tan""exp(z + 1 — 2sech(y + 7) — 2sech(y — 7)), ug(x,y,0) =0.

280 For the spatial discretization, we use a uniform triangulation of the square. For
281 the time discretization, we use a 4th order Nystrom method [14, p. 285], which
282 entails three mass matrix solves per time step; for example, the first substep consists
283 of solving

This manuscript is for review purposes only.
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10 M. AINSWORTH, AND S. JIANG

where S is the stiffness matrix. For each solve, we use the preconditioned conjugate
gradient (PCG) with an appropriate initial guess; recall that the error €y at iteration
k of preconditioned conjugate gradient satisfies

k
(v
||ek||s<ﬁ+1 el

where k is is the condition number of the preconditioned matrix and € is the error
of the initial iterate [13, p. 636]. In Table 2, we show the minimum, median and max
iteration count of PCG over the entire simulation of 10 seconds with At = 0.01.

Corollary 3.3 and (4.1) guarantees that the iteration count will not increase with
p or with h refinement. In fact, we note that the median iteration count actually
decreases as we increase p and refine h. This is due to (4.1) being an estimate which
only relates the condition number to the error bound, but does not take into account
the possible improvements from clustering of eigenvalues. Furthermore, the estimate
does not take into account a good initial iterate, which improves as we increase the
number of dofs.

(4.1)

TABLE 2
Table illustrates the performance of the preconditioned iterative method of the mass matrix at
each time step by displaying the [min, median, maz] iteration count of all 3000 PCG solves from
using the Nystrom method for a period of 10 seconds with a At = .01 on ur = Au in a uniformly
triangulated square. The iteration count does not increase as predicted in Corollary 3.3 and (4.1).

Order | 16 Elements 64 Elements 256 Elements
4 [21, 27, 34] [20, 25, 34] [17, 23, 31]
8 [17, 23, 29] [16, 21, 30] [16, 21, 26]
12 [17, 22, 27] [16, 18, 26] [16, 17, 25]
16 [16, 18, 25] [15, 18, 24] [15, 15, 23]
20 [16, 18, 24] [15, 15, 23]

4.4. Implicit time-stepping. Finally, we illustrate the use of the precondi-
tioner in the solution of the heat equation where the time-stepping scheme requires
the inversion of a perturbed mass matrix at each step. Let u(x,y,t) be defined in
Q =[-1,1] x [-1,1] be the solution to the heat equation

u; = Au, (z,y) et >0
with Neumann boundary condition; we use a simple initial condition

u(z,y,0) = exp(—(z? +y%)).

The time stepping scheme we use is the Crank-Nicolson method:
At At
(0 818) o - (- &ls)

where S is the stiffness matrix. By Schmidt’s inequality [15], there exists a ¢ inde-

pendent of p, h such that
4 1 p4

At
OSSSC%M — M<M+='S<

(4.2) 5
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The preconditioned system will have condition number of

(4.3) K <P—1 (M + ;Ats>> =0 (A#}ﬁ) .

Observe that if we were to use a fully explicit scheme, then the CFL condition
is At ~ ; thanks again to Schmidt’s inequality being sharp. If we use the choice

At ~ 171 for the implicit scheme, then (4.3) shows that the iteration count will not

. . . 2 . .
increase as we increase p. In practice however, one generally chooses At ~ 2—2 in which

case (4.3) shows that the condition number will grow at a rate of at most O(p?); hence
the iteration count will also increase. These conclusions are illustrated in Table 3. In
the first two columns, we start with an initial iterate of 0 in each PCG method. In
the other two columns, we use the solution from the previous time step as the initial
iterate, which results in drastic decreases in iteration counts.

We remark (4.3) could be improved to O((1+1log? p)(1+log®(p/h))) by combining
Algorithm 3.2 with a domain decomposition preconditioner for the stiffness matrix [2]
but would require a significant increase in computational cost.

TABLE 3
Table to illustrate the performance of the preconditioned iterative method to the matrix resulting
from Crank-Nicolson scheme by displaying the [min, median, max] iteration count of all PCG solves
from using Crank-Nicolson for a period of 1 seconds on 16 elements for uz = Au in a uniformly
triangulated square. For the latter two columns, the initial guess is the previous time-step. The
behaviors as we increase p is predicted by (4.3).

Initial Iterate: 0 Initial Iterate: u™
p | At~ At ~ b At~ I At ~ b
4 | [35, 36, 37] [35, 36, 37] [34, 34, 36]  [34, 34, 36]
8 (38, 39, 39] [66, 67, 73] [9, 17, 35] [49, 51, 73]
12 | [34, 35, 35] [87, 91, 103] [4, 8, 29] [51, 55, 101]
16 | [32, 33, 33] [108, 114, 127] (2, 7, 24] [48, 55, 124]
20 | 16,19, 19] (129,130, 151] | [1,1,9]  [47, 55, 149]

5. Additive Schwarz Theory. Thanks to Corollary 3.3, the analysis of the
preconditioner reduces to bounding the condition number on the reference element
as in Theorem 3.1. Consequently, for the remainder of this article we confine our
attention to the reference triangle.

Let X := P,(T) be equipped with the standard L? inner-product denoted by (-, -)
with the respective norm denoted by ||||, and let X := H}(T)NP,(T) be the interior
space equipped with the L?(T) inner-product. The orthogonal complement of the
(closed) subspace X in X is denoted by )Z'B, ie.

(5.1) X=X,0Xp Xl Xz

We begin by exploring the structure of the space X p. Let P,(0T) denote the
space of traces of P,(T") on the boundary 9T of the reference triangle:

(5.2) P,(0T) = {u : u = v|or for some v € P,(T)}.

The next result shows that there is a one-to-one correspondence between Xp and
P,(0T).

This manuscript is for review purposes only.
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12 M. AINSWORTH, AND S. JIANG

LEMMA 5.1. For every u € P,(9T), there exists a unique U € X which satisfies
u=wu ondT, and (i,v) = 0 for allv € X;. Furthermore, U is a minimal L* extension
of u in the sense that for all w € Pp(T) with w|gr = v we have ||u| <||w]|.

Proof. Let u € P,(9T) be given. According to (5.2), u is equal to the trace of a

polynomial in P, (7"), which we again denote by u. We can construct a u € Xp with
the claimed properties as follows.
Let

ur € Xy (’LL],'U]) = _(U7U[) Yur € X7.

Set u = u + uy; clearly 4|gr = u and (@, vy) = 0 for all vy € X7; this gives existence.
For uniqueness, let w € P,(T) : W]or = u, (w,vr) = 0 for all v; € X, then

(’11—117,’[}]):0 Yoy € X7.

Hence @ — 1w = 0 as & — W € X;. The minimal L? extension property follows from the
Pythagorean identity. 0

We say that @ is the “minimal L? extension” or “minimal extension” of u €
P,(0T). Lemma 5.1 shows that u is uniquely determined by the boundary values of
u and the degree of the space.

We decompose the space X further. Let @; and )ng ) be the minimal extension,
constructed as described in Lemma 5.1, of the vertex basis function and edge basis
function defined in section 2 respectively. Let

Xy =span{@; :i=1,2,3}

and
)?El.:span{)}ﬁf):nzo,...,p—Q}, 1=1,2,3.
By the construction of the basis functions on the boundary and, thanks to (2.1) and
(5.1), we have
~ 3 ~
(5.3) X=X 10Xy Xz,
i=1

Let & = [p1; p2; 3] where ¢; are the vertex basis functions with 1/7 defined simi-
larly for the interior basis functions, and, using the notation of section 2, define

(54) é - QB— MV[MI_II’J.
Then for @ € R3, we have for all X; > w = @74,
(@3, w) = (ﬁT(;va wTﬁ;) = (ﬁT(@* MVIMﬂlJ)JETJ)

@ My i — @* My M} M = 0.

Hence {¢1, P2, p3} € )?B, and as a consequence forms a basis for )?V (since @;lor =
vilor). A basis for X, with ¢ = 1,2,3 can be constructed in the same fashion.
Next, we define the bilinear forms on each subspace in the decomposition (5.3):
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389 e Interior space Xj:
399 aI(u7w) = (uvw)a u,w € X7.
392 e Vertex space Xv:
1< -
i:))]i ay p— zz: v )w(v;), u,w € Xy
395 where v1,v2,v3 are the vertices of T
396 o Edge spaces Xg, (1 =1,2,3):
397 ag, (u,w) = Z G pin (W) o (W), u,w € XEl
398 =
399 with ¢, defined as in (3.1), and p,, is the weighted moment given by
@n+®m+3W%HQ/1()
400 o (1) = (2 u(z) dx
401 " 32(n+1)(n+2) 1
102 where we use a linear parametrization such that v; = [-1,1].
103 The spaces and inner-products defined above give rise to an Additive Schwarz
404 Method (ASM) preconditioner [11,23,26] whose action on a given residual f € X is
405 defined as:
(i) ur € Xp:ar(ur,vr) = (f,vr) Vor € Xp.
106 (11) uy € Xy : av(uV,Uv)N: (f7 ’Uv) Yoy € Xy _
(111) Fori=1,2,3, Ug, € XE Lag; (UE , VE,; ) = (f,?)Ei) V'UEi S ‘XE1
(iv) w:=ur+uy + Z _, ug, is our solution.
407 5.1. Matrix Formulation of the ASM. In practice, it is convenient to refor-

408  mulate steps (i)-(iv) in terms of matrix operations.
409 1) Recall that X; = span{t;;} and let u; = @} 1/1 where w is the column vector of all
410 the interior basis functions. The matrix form of (i) is

413 M ii; = ar(ur, ) = (f,4) = f1.

413 2) Let uy = ﬁ%;{; where é is the basis for )?V in column form. As @;(v;) = d;;, we
414 have

1 o = =
415 —Ivviy = av(uv,p) = (f,9).
116 p
417 Inserting identity (5.4) in the right hand side gives
a8 (£.9) = (£,@) = MvIM (f.9)
439 = fv = My M} fr.
421 3) Let ug, = ﬂgl )% where )% is the basis for X’El in column form. By the orthogonality
122 properties of Pi(2’2)(x) in (3.1), the weighted moments in ay (-, -) of (iii) simplifies
423 to tin(Xi)tn(X;) = 0;5, and hence we have
A (1) - = =
3 Dispie, = ag, (up,,X) = (V-
126 The same reasoning holds for edges 72, v3. The right-hand side modification follows
427 from 2).
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14 M. AINSWORTH, AND S. JIANG

428 4) The vector solution &y to step (ii) corresponds to the function 4y := f‘T/é Ap-
429 plying identity (5.4) again, we have

r{{?(l) uy = fg (@7 MV[MI_Iliz) .

432 Therefore, our minimal energy solution contains interior functions of the form
433 ~M; M vZy which we have to add back to #7. A similar correction term is
434 needed for the three edge terms.

135 THEOREM 5.2. The abstract Additive Schwarz Method defined above corresponds
436 to Algorithm 3.1.

437 Proof. Steps 1), 2), 3), 4) above corresponds to line 2, line 4, line 3 and line 5
438 respectively from Algorithm 3.1. ]
439 5.2. Proof of Theorem 3.1. We apply the standard theory [11,23,26] for the

440 analysis of additive Schwarz methods to the scenario as described above. In particular,
141 we will follow the framework as laid out in [26, §2].

442 LEMMA 5.3 (Local Stability). For a constant C' independent of p, each of our
143 local bilinear forms are coercive in the sense that

444 (u,u) = ar(u,u) Yu e Xp,

445 (u,u) = ag, (u,u) Vu e Xp,,i=1,2,3,

446 (u,u) < 3Cay (u,u) Yu € Xy.

448 Proof. The first equality holds as X7 is a subspace of X and inherits the inner-

449 product. For Xp,, identity (6.2) of Lemma 6.4 gives us the equality
p—2
2
450 ap, (u,u) = Z Qutin (w)? =||ul]”.
n=0

452 Finally, for u € )Z'V, we rewrite u = Z?=1 u(v;)@;. Using the triangle inequality and

153 the estimate ||3;]|* < Cp~* of Lemma 6.3, we have
> s 30 <
454 lull* <33 |Ju)@i|” < S5 lu(w:)|* = 3Cay (u,u). O
455 i=1 L
456 The next result gives an estimate for the largest eigenvalue, and is an immediate

457 consequence of the triangle inequality and Lemma 5.3:

458 LEMMA 5.4. There exists a constant C independent of p such that for all u € X,
159  the unique decomposition

3

460 u:u[—i—uv—&—ZuEi,

461 i=1

462 with ur € Xy, uy € )?V,uEi € )Z’E, satisfies
3

163 ||uH2 < C | ar(ur,ur) +ay(uy,uy) + ZaEi(qu‘,7uEi)
i=1

465
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The final ingredient is the following bound for the smallest eigenvalue of the additive
Schwarz operator, whose proof is the subject of section 6:

THEOREM 5.5 (Stable Decomposition). For all u € X, with the decomposition
as in Lemma 5.4, there exists a constant C independent of p such that

3
ar(ur,ur) + av(uy,uy) + > ag,(ug,, up,) < Clul?.

i=1

The proof of Theorem 3.1 is now an immediate consequence of Lemmas 5.3 and 5.4
and Theorem 5.5 thanks to Theorem 2.7 of [26].

6. Technical Lemmas. In this section, we present the technical lemmas that
were used in the proof of Theorem 3.1. For notational purposes, we let |-|| , define
the L2-norm over a domain w, and we shall omit the subscript in the case w = T the
reference element.

We begin with a bound relating the vertex values of a polynomial to its L? norm
over the triangle. The constant appearing in Lemma 6.1 is the best one possible; a
related result was proved in [27].

LEMMA 6.1. For u € P,(T'), we have that

‘ -

max _|u(v;)| < (p+ 1)@+ 2)[ul.

i€{1,2,3}

S

Proof. For 0 <1,j,74 7 < p define

(61) \I/ij(x,y) _ \/(21 + 1)(1 +Jj+ 1) P<(0’O)(f) (12”7>Z Pj(2i+1,0)(n)’

2 3

where ¢ = 2(%? — 1 and n =y [16, §3]. These functions form an orthonormal basis

I
for P,(7). Hence, u € Py(T) can be written in the form u = 37, . u;;¥;; and

lul> = diti<p ufj It suffices to prove the inequality in the case of vertex (—1,—1).

Using Cauchy-Schwarz gives

2
2 v Qi+ DE++1)
u(-1, - = iﬂzﬁpel)*w\/ ;
S DRI P R T | I

i+j<p i+j<p

Next, we prove an equality needed to bound the minimal extension of the vertex
functions.

LEMMA 6.2. Define
(_1)p+1 /

= —— x - 77(_1)1&11_% (1,1) x x —
7p(p+1)Pp( )(1 )* P 9 prl ( )a 6[ 131]

where P, is the Legendre polynomial. Then

&p()

2 4
(7 R Gr)@+1)
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16 M. AINSWORTH, AND S. JIANG

Proof. We note that £,(—1) = 1,£,(1) = 0, and &,(z;) = 0 where z;,i =2,...,p
are the roots of P, (x). Hence, using the (p+1) point Gauss-Lobatto quadrature gives

1 P
/ fg(m)dx:wl—i—Zwiﬁz(xi)—i—E
-1 i=2

where F is the error term

(p+ 2%+ (p — DI 420

T g T

e@l,_,, nel-L1.

for some n € [—1,1]. Direct calculation shows that E = 2 P which, along

T @prD)(pt1

with the fact that w; = m, gives the result claimed. 0

Using the function defined in Lemma 6.2, we can bound the minimal extensions of
the vertex functions.

LEMMA 6.3. The minimal extension of the vertex basis function of degree p sat-
isfies the bound

C qElir< S
c mp<C
p? ’ pt

where ¢ and C are positive constants independent of p.

Proof. Without loss of generality, assume that ¢ = 1 which corresponds to v; =
(—1,—1) of the reference triangle 7. Using the minimal L? property of @;, and
Qp/2) C P, where Q, = {z%yP : 0 < a, B < 1}, gives:

~ 2 . 2 .
[e1" = —min fluf|" < min_uf
u=¢i on 0T =1 on
UG]P’,J uEQLP/ZJ

Consider the polynomial ¢, € Qy, defined by
G, y) = & (2)6r(y) — & (—2)&r ()

where £ (z) is defined in Lemma 6.2. By construction, {|,/2] = ¢1 on 97, and

4@2lp/2) = 1) c
lp/2)%(lp/2) +1)22Lp/2] + 1) ~ P
which proves the upper bound.
The lower bound is an immediate consequence of Lemma 6.1 (choosing v = ¢;).0

IN

2
HCLp/zJH =

REMARK. The |p/2| order on the vertex functions is crucial here to guarantee
that Q|2 is a smaller space thanP,. Using p as the order on the Legendre polynomial
will result in log-like growth rather than a uniform bound on the condition number;
see Figure 2.

The next result gives an explicit expression for the norm of a minimal extension
of an edge function:

LEMMA 6.4. Let u € P,(7y) be a polynomial on edge v C 0T, which vanishes at
the endpoints, be written in the form

u(z) = (1 -2%) Y wiP*? (),
1=0

This manuscript is for review purposes only.
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where x € [—1,1] is a parametrization of v. Then the norm of the the minimal energy
extension u € P, (T), satisfying w =0 on 0T \ v and uw =1 on v, is given by

p—2

2 Zﬂiw?
(6.2) [l :; (p+i+4)(p—i—1)

1 2,2 i+1) (i
where p; = [~ (1 — x2)2Pi( N(2)? dz = 21’3-35 %

Proof. Without loss of generality, take the edge to be v = {(z,y) :y = —1,-1 <
x < 1} of the reference triangle. We construct a basis for the space of polynomials
which vanish on 9T \ 7; and express « in the form

e =0-0)(15) % wr (50 AEeoe

i+j<p—2

for suitable coefficients {u;; € R: i+ j < p—2} where £ = 2(%';) —land n=y. The
L? norm to minimize can be expressed in terms of {u;;}

it = [ [ @ (50 ) awie= S @y

i+j<p—2

+5 .
(2i+5,0) o 1
2 Pj (77)2 d77 ~ i+j+3

statement. The requirement for @ = u on v means that

where v;; = f_ll and pu; as defined in the lemma

—2—i
U, -1) = (1-2%) Y (-uyP? (@) = wi= pZ (=1)71.
i+j<p—2 =0
The Cauchy-Schwarz inequality gives
p—2—i p—2—i p_2—i
(6.3) w?< Z/Z-;1 Z uzvi | = %(p—z—l Yp+i+4) Z Uu;vij
j=0 j =0

with equality if there exists a constant A, such that for all j € [0,p —2— ] and fixed i,
such that (—1)7a;;v; 1-/2 =\, 2 or equally well, u;; = (—1)7A(i +j +3). The choice
w; p— 2 7 1)
A= S s gives w; = Z (—1)7;5.
Direct computation reveals that

— p—2—1t

p—2 2
~ LW}
U i ul Vi; = ) .
Jal* Z“ Z 37 Zl(p—z—l)(p+z+4)

i=0 2

and the result follows. O
The following discrete weighted Hardy’s inequality will prove useful:
LEMMA 6.5. Let {v;}]_o € R satisfy D27 sen i = 0 and 3°7_; 4qvi = 0. Then
there exists a constant C' independent of p such that
(6.4)
2

p 2 p
> & <oy .
(i —12Qi+1)(i+p+2)(p—i+1) 2+ 1)(i+p+2)(p—i+l)
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18 M. AINSWORTH, AND S. JIANG

where
~ vo| + |va| 4+ -+ + |vi—2] if @ even
(6.5) g — Jlvol + v |vi-al
[v1] 4+ || + -+ + |vi—2] else
Proof. We prove the inequality in the case where all the coefficients with odd
indices vanish. Hardy’s inequality for weighted sums states that for non-negative
Ak, b,y s

2
(6.6) Z Z ap | b, < C? Z ate,
n=1 \ k=1 n=1

1/2
with C' < 2v/2 [17, p. 57] given sup,,cy (ZZ’;” b > rey clzl) < 0. Choosing

ap = |vg(p—1)| for k=1,...,[p/2] and by, c, for n =1,...,|p/2] to be

1
(4n —3)(2n+p)(p—2n+3)’
1
2n—12Un+1)2n+p+2)(p—2n+1)

Cp —

by =

with remaining indices chosen to be a;,b; = 0 and ¢; = 1 in (6.6) gives the required
estimate. A similar argument can be used to obtain the estimate when the coefficients
with even indices vanish. The desired estimate then follows by combining the two
cases. ]

The next result gives a bound on the norm of the minimal extension of a polyno-
mial supported on a single edge of a triangle:

LEMMA 6.6. Let u € P,(T), such that u(v;) = 0 for v; the vertices of T. Let vy be
any edge of T, and let U € P,(0T') such that U|, = u|ly and U = 0 on the remaining
two edges. Let U denote the minimal L? extension of U, then there exists a constant
C independent of p such that

] < e
Proof. Without loss of generality, we assume v = {(z,y) : y = —1,—-1 <z < 1}

and let W;; be given by (6.1). Since {¥;;}o<i j,i+j<p forms a basis, we may write
=73, i<, i;Vij, and denote

fouly = 3 (1P [ EEDCETED ooy

= 2
1+j<p

Our technique is to express f as a sum of (1 — xQ)PZ-(Z’Q),i =0,...,p—2, and to then
use Lemma 6.4 to calculate HﬁH Define v; = Z?;é(—l)juij %U(Qilﬂﬂ), then in

order to use Lemma 6.4, we seek coefficients w; such that

p p—2
Z UiPi(()’O) (.’E) = (]_ — 1’2) Zwipi(Z’Q) (x)
=0

=0
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Observe that since u vanishes at the vertices of T, we have u(£1, —1) = 0, which
in turn implies Y% _jv; =0 and Y% (=1)"v; = 0, or equally well

(67) i (T 0, i V; = 0.

i=0,even i=1,0dd

Consequently, we can rewrite f as

p p
= Y OS> (R RO,

i=2,even i=3,odd
where
v vo + - +vi_9 if i even
P 1
Si=vi +viy2+ -+ =
Up—1 v+ -+ v;_o else

depending on the parity.
Using the identity

2
B 1—=z (n+1)(n+2) Pﬁg) n- 1P,(ii) _ p0,0) _ p(0,0)
2(n—1) 2n 2

which follows from identities (22.7.15) to (22.7.19) from [1], we have

P . . p—2
(+10E+2) Je2 1,02 (2,2)
=2 1=0

Si+4 (Z+1) ’L+2) S

and we deduce that w; = = -1y Dit2: Writing S;14 = Sit2 — vi42, we have

V42 5+ 2t
w; = — —

4 26+1)([E+2)

The Cauchy-Schwarz inequality gives

p—i p—i p—i

2i+D@+j+1) _ Qi+DE+p+2)(p—i+l)
#e Sy e : S,
j=0  j=0 J
which in turn gives
P A2 p p—i )

6.8 2 - = [|ul]|”.

it Er PRI
Using Lemma 6.4 and the inequality w? < 1“ += kQSH_Q where k; = %,

we have

2 P22 211

Hiw

.

H ;(p—i-z—i—él)(p—z—l)
—92 -2
< X Uz'2+2 X kizSiQJrz

— (p+i+4)(p—i—-1)(2i+5) +; (p+i+4)(p—i—1)(2+5)
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Turning to the first term, thanks to (6.8), we have

v, a 4o?
- <Ccy - < Cllul.
(p+i+4)(p—i—1)(2i+5) — — 2i+1D)GE+p+2)(p—i+1) —

M \

=0

For the second term, we first denote

3 |vg] 4« -+ + |vi—2| if i even
[v1] + -+ - + |vi—2] else

so that S? < S2. S2. We first note that k; < 1 and change the index of the summation,
then using Lemma 6.5 and (6.8), we obtaln

> 2
S (-1PQi+p+it+2)(p—it+]l)
p 32
Sz:z—l 2z+1)(pS—|—z—|—2)( —i+1)
i= , B 2
SCZZ: 2i+1) z—l—p—zi—?)(p—i—&—l)SC”u”
and the result follows as claimed. 0

Finally, we are in a position to give the proof of Theorem 5.5:

Proof. The first step is to construct a suitable decomposition for u € X. Let

’U’L @z e)(V

IIMw

be the interpolant to u at the vertices using the minimal L? vertex functions.
Consequently (u — uy)|ar € P,(9T) vanishes at the element vertices, and can
therefore be written in the form

u—uv|3T=U1+U2+U3
where U, € P,(9T) is supported on edge ;. We then let
up, € XEi
be the minimal L? extension of U; into the triangle. It follows that
u—uV—ZuEi =uy € Xy
i=1

Thus v = uy + 2:3:1 ug, + ur is a decomposition of u. It remains to show the
decomposition is uniformly bounded.
Firstly, by Lemma 6.1:

(6.9) av (uy,uy) = 1 > u(v;)? < 3 max }U%Z) < 3C|ul?.
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For the edge contributions, we use Lemma 6.6 to bound

a, (up, up,) =llus, I < Cllu—uv|[* < 2C (Jul® +|luv]*) .

then use the estimate||uy||* < Cay (uy,uy) from Lemma 5.3 and (6.9), to deduce

luy |I* <[lul* and hence ag, (up;, u,) < Cllull*.

Finally, as uy + E?:1 ug, € Xp, Lemma 5.1 gives us (uI,uV + Z?:1 uE) =0,

hence
2
3
2 2 2
ar(ur,up) =lur|® <llurl® +{juy + Y ug, || =|ul,
i=1
and our result follows. ]
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