
An O(p3) hp-version FEM in Two Dimensions:
Preconditioning and Post-Processing

Mark Ainswortha, Shuai Jianga,1, Manuel A. Sanchézb

aDivision of Applied Mathematics, Brown University
bInstituto de Ingenieŕıa, Matemática y Computacional, Pontificia Universidad Católica de

Chile

Abstract

The Bernstein polynomials have been known for over a century and are widely

used in the spline literature, computer aided geometric design, and computer

graphics. However, the realisation that the Bernstein basis has favourable prop-

erties allowing the efficient implementation of high order methods for the ap-

proximation of partial differential equations is a relatively recent development.

For instance, it is known [2] that the Bernstein basis can be exploited to compute

all of the entries in the load vector in O(p3) operations even in the case of non-

linear problems on curvilinear elements for a degree p approximation. Moreover,

the element matrices can be assembled in O(1) operations per entry. We show

that properties of the Bernstein polynomials can also be exploited to obtain

O(p3) complexity procedures for all of the main components needed to imple-

ment a high order finite element code including: computation of the residuals

needed for an iterative solution method; evaluating the action of a precondi-

tioner for the global mass matrices; and, visualization and post-processing of

the resulting finite element approximations.

The construction of a preconditioner for the mass matrix whose condition

number does not degenerate with the order p, at a cost of O(p3) operations, is

one of the main contributions of the present work. The preconditioner is based

Email addresses: mark_ainsworth@brown.edu (Mark Ainsworth),
shuai_jiang@brown.edu (Shuai Jiang), manuel.sanchez@ing.puc.cl (Manuel A. Sanchéz)

1This work was supported by the Department of Defense (DoD) through the National
Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Preprint submitted to CMAME March 25, 2019

on an abstract Additive Schwarz Method recently developed by the authors. The

preconditioner can be implemented at a cost of O(p3) operations by exploiting

properties of the Bernstein polynomials. In particular, we present an algorithm

which allows one to invert the interior block of the element mass matrix in O(p3)

operations. Numerical examples are provided to illustrate the applicability of

the Bernstein basis to challenging non-linear reaction-diffusion problems, non-

linear wave propagation of solitons and to robust approximation of problems

exhibiting boundary layers.

Keywords: preconditioning mass matrix, high order finite elements,

post-processing

2010 MSC: 65N30, 65F08, 68U05

1. Introduction

The theoretical foundations of high order finite element methods (hp-FEM)

were the topic of intense research in the 1980s-90s, and are now relatively well-

established. For instance, hp-FEM has been proven to exhibit exponential con-

vergence for many classes of problem, such as PDEs with piecewise analytic data

[8], boundary-layer problems [34, 42] and even ones with singularities [14, 42].

Yet there remain practical issues that seem to be inhibiting the more widespread

adoption of hp-FEM in both industry and academia.

The root cause of many of these issues of hp-FEM can often be traced to

the selection of an appropriate basis for the implementation. Early endeavors

into the construction of high order bases such as Lagrangian and Peano bases

quickly fell out of favor due to the condition numbers of the resulting mass and

stiffness matrices [45]. Although the current bases of choice are the hierarchical

or Dubiner bases [14, 17, 28], recently attention has been drawn to favorable

properties of the Bernstein polynomials [2, 30]. The Bernstein polynomials [20]

are widely used in the spline literature [37], computer aided geometric design

(CAGD) [19], and computer graphics (e.g. PS/TT fonts) [26] but have hitherto

not been widely adopted as a basis for high order finite element approximations.

2

One immediate benefit of using the Bernstein basis is the ease with which one

can visualize and post-process finite element solutions owing to the ubiquitous

usage of the Bernstein basis in CAGD and the computer graphics community.

Generally, visualization and post-processing, including computing iso-surfaces

and gradients, of a high order approximation is considerably more complicated

than for a low order approximation [38]. For example, visualizing a high order

approximation expressed using hierarchical bases typically requires the explicit

evaluation of Jacobi polynomials at large number of points which can become

prohibitively expensive [28]. Nevertheless, if the approximation is expressed in

Bernstein-Bézier form, then techniques developed in the CAGD community en-

able one to visualize a degree p approximation in O(p3) operations as described

in section 3.

The suitability of the Bernstein basis for finite element approximations is less

clear-cut. Here, among other things, one needs to compute moments of the data

with the basis functions (e.g. when constructing the load vector) which, along

with the assembly of the element matrices can dominate the computational

costs. In the case of tensor product elements, one can use the sum factorization

approach, pioneered by Orszag [36], to efficiently compute matrix-vector prod-

ucts and, although less well-known, to evaluate moments of the data. Standard

hierarchical bases on a triangle do not naturally have a tensorial structure and

are therefore not amenable to sum factorization approaches. Tensorial hierar-

chical bases [17, 28] circumvent this difficulty, but lack rotational symmetry

and are sub-optimal when it comes to the evaluation of the element matrices.

Perhaps surprisingly, the Bernstein basis was shown in [2] to naturally have the

tensorial property, which is needed for the sum factorization approach, despite

having been known for decades prior to the realization of the importance of

the tensorial property. We briefly discuss how the AAD algorithms [2] can be

used to construct moments efficiently, and enable the evaluation of the element

matrices in optimal complexity in section 3.5. In particular, we show that these

algorithms can be used to calculate quantities of interest of the solution in O(p3)

operations per element.

3

The aforementioned computational properties of the Bernstein basis come

at a price: the ill-conditioning of the resulting matrices. For example, the

mass matrix for the Bernstein basis has a condition number which grows as

O(22pp−1/2) [31], whereas the mass (and stiffness) matrix for hierarchical bases

has condition numbers which grow at O(p4) or faster as we increase the order

[4, 32, 35]. Recently an Additive Schwarz Method (ASM) preconditioner for the

mass matrix was developed [5] which results in a uniform O(1) bound on the

growth of the condition number independent of the polynomial order p. The

preconditioner is basis independent and therefore applies to both hierarchical

and Bernstein bases. In section 4, we present algorithms which implement the

ASM preconditioner in O(p3) operations in the case of the Bernstein basis. We

exploit a number of properties of the Bernstein basis to reduce computational

costs. A key component of the algorithm is the static condensation of the interior

degrees of freedom on each element: we present an algorithm which allows one

to achieve this in O(p3) operations.

In section 2, we present some canonical applications and use them to high-

light some of the specific difficulties that one encounters when attempting to use

a high order scheme to approximate their solutions. The above developments

mean one can tackle each of these problems by using the Bernstein basis at an

overall complexity of O(p3) operations. Finally, in section 5 we return to the

canonical examples described in section 2, and illustrate the performance of the

above procedures when applied to these cases.

2. Model Problems, Finite Element Formulations, and Computational

Challenges

We consider three prototypical problems which theory suggests should be

amendable to high order FEM approximations yet each problem exhibits fea-

tures which present challenges in terms of the efficient implementation of a high

order scheme.

In each case Ω ⊂ R2 is a polygonal domain which is partitioned into the

4

union T of non-overlapping triangular elements with the standard assumptions

that the nonempty intersection of any two distinct elements from T is either a

common vertex or a single common edge. More generally, we consider a family

of partitions which is assumed to be shape regular in that there exists a number

c > 0 such that for all partitions, each triangle T contains an incircle with radius

r ≥ hT /c where hT is the diameter of T .

Let Pp(T) = span{xαyβ : 0 ≤ α, β, α + β ≤ p} denote the space of poly-

nomials of total degree p on T ∈ T . Define the standard H1-conforming finite

element space X = {u ∈ H1(Ω) : u|T ∈ Pp(T),∀T ∈ T } and the H1
0 -conforming

space X0 = X ∩ H1
0 (Ω). Let {ϕi}Ni=1 be a basis for X, so that any u ∈ X

or X0 can be written as u = ~uT ~ϕ for ~u ∈ RN , where ~ϕ is the vector whose

components are the basis functions. Let M and S be the associated mass and

stiffness matrices.

2.1. Sine-Gordon Equation

The sine-Gordon equation arises in a range of applications, including differ-

ential geometry [48] and modeling the dislocation of crystals [9, 16], and consists

of seeking u such that

∂2u

∂t2
= ∆u− sinu, (x, y) ∈ (−7, 7)2, t > 0 (1)

subject to initial conditions given, for example, by [11]

u(x, y, 0) = u0(x, y) = 4 arctan exp(x+ 1− 2 sech(y + 7)− 2 sech(y − 7))

∂
∂tu(x, y, 0) = w0(x, y) = 0

along with homogeneous Neumann boundary conditions. The variational form

of the problem consists of seeking u(t) ∈ H1(Ω), t > 0 such that

∂2

∂t2
(u, v) = −(∇u,∇v)− (sinu, v) ∀v ∈ H1(Ω) (2)

where u(0) = u0 and ∂
∂tu(0) = w0. The solution is smooth (see fig. 1), and thus

should be amenable to approximation using higher order methods [41].

5

Figure 1: Contour plot of the solution of the sine-Gordon equation with the initial conditions

from section 2.1 at t = 5.

Let up(t) ∈ X be the Galerkin approximation to eq. (2) subject to the initial

conditions up(0) = u0p and ∂
∂tup(0) = w0p where u0p, w0p ∈ X satisfies

(u0p, v) = (u0, v) ∀v ∈ X

(w0p, v) = (w0, v) ∀v ∈ X.
(3)

Writing up(t) = ~u(t)T ~ϕ for ~u(t) ∈ RN , the semi-discrete problem takes the form

M d2

dt2 ~u(t) = −S~u(t)− (sinup(t), ~ϕ).

A fully discrete scheme can be obtained by using a Nyström method [25, p.

285] to discretize the temporal derivative:

z = ~un

M~un+1
1 = −S~w − (sin z, ~ϕ)

z = ~un + (∆t)~unt /2 + (∆t)2~un+1
1 /8

M~un+1
2 = −S~w − (sin z, ~ϕ)

z = ~un + (∆t)~unt + (∆t)2~un+1
2 /2

M~un+1
3 = −S~w − (sin z, ~ϕ)

~un+1 = ~un + (∆t)~unt + (∆t)2(~un+1
1 /6 + ~un+2

1 /3)

~un+1
t = ~unt + ∆t(~un+1

1 /6 + 2~un+1
2 /3 + ~un+1

3 /6)

(4)

6

where ~un = ~u(n∆t), ~ϕT~u 0 = u0p, and ~ϕT~u 0
t = w0p. Implicit time-stepping

schemes will be considered later.

The first difficulty encountered in the implementation of eq. (4) is the compu-

tation of the nonlinear moment (sin z, ~ϕ) whose efficient computation is essential

as it has to be evaluated at every sub-step. A straightforward treatment of the

vector (sin z, ~ϕ) would entail using a quadrature rule with O(p2) quadrature

points for each of the O(p2) entries incurring a cost of O(p4) in basis function

evaluations [2]. For most hierarchical bases, function evaluation involves eval-

uations of univariate Jacobi polynomials using a recursion at a cost of O(p)

operations per point [1, 43]. It is possible to use precomputed arrays, in which

the values of the basis functions at quadrature points are cached, but the cur-

rent computing platforms lean towards the view that memory access is costlier

than CPU cycles [39].

The second difficulty is that one needs to solve three systems involving the

mass matrix M at each time-step. The mass matrices obtained using hierar-

chical bases have condition numbers which grow as O(p4), or faster, even for

tensor product elements [4, 32, 35]. In [4, 32], it was shown that applying di-

agonal scaling as a preconditioner for the mass matrix results in a reduction

of the condition number to O(p2). Nevertheless, there is a significant cost in-

volved in solving systems involving the mass matrix. Fortunately an Additive

Scharz Method (ASM) preconditioner was recently developed for the mass ma-

trix which results in a uniformly bounded condition number independent of p

[5]. We shall pursue this further in section 4 when we consider how to address

the efficient inversion of the mass matrix.

Quite apart from issues of conditioning, efficient iterative methods also re-

quire fast matrix-vector multiplication. There are two ways to compute matrix-

vector products. The first is the explicit construction of the mass and stiffness

matrices, which will incur a cost of O(p6) basis function evaluations if performed

in a naive fashion [2], and to then compute the matrix-vector products directly.

The second way is to use a matrix-free approach which enables the computation

of the matrix-vector product in O(p3) provided that a tensorial basis is used on

7

Figure 2: Contour plot of the solution of the v component of the Brusselator equation with

the initial conditions from section 2.2 at t = 10.

the triangle [28].

2.2. Brusselator

The Brusselator system is a model of an autocatalytic chemical reaction [25,

p. 248] and consists of seeking (u(t), v(t)), t > 0 such that

∂u

∂t
= 1 + u2v − 4.4u+ 0.002∆u

∂v

∂t
= 3.4u− u2v + 0.002∆v

(x, y) ∈ (−1, 1)2, (5)

subject to homogeneous Neumann boundary conditions, and initial conditions

given, for example, by

u(x, y, 0) = u0(x, y) = 0.5 + y

v(x, y, 0) = v0(x, y) = 1 + 5x.

The corresponding variational formulation is to seek u(t), v(t) ∈ H1(Ω), t > 0

such that

∂

∂t
(u,w) = (1, w) + (u2v, w)− 4.4(u,w)− 0.002(∇u,∇w)

∂

∂t
(v, w) = 3.4(u,w)− (u2v, w)− 0.002(∇v,∇w)

(6)

for all w ∈ H1(Ω). Although the solution is smooth (see fig. 2), it does exhibits

steep interior layers whose location changes as the solution evolves.

8

Let up(t), vp(t) ∈ X be the Galerkin approximations to eq. (6) for u, v re-

spectively, subject to initial conditions satisfying

(up(0), w) = (u0, w) ∀w ∈ X

(vp(0), w) = (v0, w) ∀w ∈ X.

Let ~u(t) ∈ RN be the vector such that up(t) = ~u(t)T ~ϕ and likewise for ~v(t) ∈ RN ,

then the semi-discrete problem is

M ∂
∂t ~u(t) = (1, ~ϕ) + (u2

p(t)vp(t), ~ϕ)− 4.4M~u(t)− 0.002S~u(t)

M ∂
∂t~v(t) = 3.4M~u(t)− (u2

p(t)vp(t), ~ϕ)− 0.002S~v(t)
.

To arrive at the fully discrete scheme, we use an IMEX scheme [40] for the

time discretization as follows:

M~un+1 −M~un

∆t
= (1, ~ϕ) + (u2

nvn, ~ϕ)− 4.4M~un+1 − 0.002

2
(S~un+1 + S~un)

M~vn+1 −M~vn

∆t
= 3.4M~un − (u2

nvn, ~ϕ)− 0.002

2
(S~vn+1 + S~vn)

(7)

where ~un is the approximation at n∆t, and (u2
nvn, ~ϕ) is shorthand for the non-

linear term (u2
p(t)vp(t), ~ϕ) at time t = n∆t. Observe that if we were to use a

fully explicit scheme, the CFL condition for stability is ∆t ≤ C h2

p4 which, owing

to the rapid decrease with p, is generally regarded as being overly restrictive

for practical computations. Instead, one typically sees ∆t ∼ h2

p2 being used in

practice in conjunction with an implicit scheme.

The efficient application of a high order scheme to the solution of the Brusse-

lator system encounters all of the difficulties which we noted for the sine-Gordon

equation. In addition, the Brusselator system involves the repeated inversion

of the matrices M + 0.001∆tS and 5.4M + 0.001∆tS, as opposed to the pure

mass matrix. Previously, we alluded the availability of an ASM preconditioner

for the mass matrix. Can this preconditioner for the pure mass matrix play a

useful role in the case of implicit schemes?

The two dimensional version of Schmidt’s inequality [15] implies there is a

9

constant c, independent of h and p, such that 0 ≤ S ≤ c p
4

h2 M, hence we have

M ≤M + 0.001∆tS ≤

(
1 + c

p4∆t

h2

)
M.

Let P−1 denote the uniform preconditioner for the mass matrix described

in [5]. Then, using P−1 to precondition the implicit scheme gives a condition

number satisfying

κ(P−1(M + 0.001∆tS)) ≤ C p
4∆t

h2
.

Observe that if one uses a time step which satisfies the CFL condition for the

explicit scheme (i.e. ∆t ∼ h2

p4), then the condition number will be uniformly

bounded. Alternatively, taking a step size of ∆t ∼ h2

p2 results in the condition

number of the operator growing as O(p2). Therefore a preconditioner for the

mass matrix also provides a useful preconditioner for the systems arising from

an implicit time stepping scheme.

Finally, a difficulty (pertinent also to the case of the sine-Gordon equation)

which often remains unacknowledged in high order finite elements analysis is the

cost of post-processing and visualization of the resulting finite element solution.

A straightforward approach to visualization based on evaluating the solution at

sufficiently many points and using a standard graphics package, would require

the evaluation of the solution at O(p2) points. At each of those points, we need

to evaluate the solution (a vector with with O(p2) entries) meaning a total of

O(p4) Jacobi polynomial evaluations are needed to evaluate u. The same costs

apply if one wishes to visualize a component of the gradient etc. We discuss the

issue of visualization and post-processing in section 3.

2.3. Problems Exhibiting Boundary Layers

Let 0 < ε� 1 be a parameter, and consider the problem on Ω = (0, 1)2

u− ε2∆u = f x ∈ Ω

u = 0 x ∈ ∂Ω

10

Figure 3: Contour plot of the solution of the singularly perturbed problem with ε2 = 10−3

and f = 1.

where f ∈ L2(Ω). This is an example of a singularly perturbed problem in

which the solution exhibits steep layers of width O(ε) in the neighborhood of

the boundary [34]; see fig. 3 for a plot of the solution for ε2 = 10−3 with

f = 1. This problem serves as a prototype for a large class of problems arising

in mechanics including, for example, the linear elastic response of thin bodies

[24].

The variational form consists of seeking u ∈ H1
0 (Ω) such that

(u, v) + ε2(∇u,∇v) = (f, v) ∀v ∈ H1(Ω).

In fully discrete form, we arrive at the linear system

(M + ε2S)~u = ~f (8)

where ~f = (f, ~ϕ). Whilst the operator M + ε2S has, at first glance, the same

structure as the operators which arose in the Brusselator example, viz M +

c∆tS, the present case poses an additional layer of difficulty which we shall now

explain.

The anisotropic behavior of the solution in the neighborhood of the boundary

means that, in order to obtain a robust scheme in ε, anisotropic or stretched

elements should be used at the boundary in conjunction with regular elements on

the interior [6]. Moreover, whilst the solution has boundary layers, it is analytic

and as such high order methods can exhibit exponential rates of convergence

11

Figure 4: Plot of the mesh to approximate the boundary layer problem section 2.3. The

needle elements around the boundaries have thickness of pε in order to resolve the rapid

changes [34, 42].

provided that the anisotropy of the elements is properly combined with the

polynomial order p [42].

The correct combination of anisotropic and p consists of using anisotropic

elements of width O(pε) along the boundary as illustrated in fig. 4 [42]. This

approach gives robust exponential convergence with respect to ε and, as such,

will outperform a pure h-version or pure p-version method [34]. Of course, using

a single layer of anisotropic elements around the boundary means that we drop

our earlier assumption that the family of partitions is shape uniform.

The fresh computational issue that arises is that the aspect ratio of anisotropic

elements has a detrimental effect on the conditioning of the stiffness matrix S

[29] resulting in issues with iterative solvers [34]. Existing preconditioners for

anisotropic elements are either inapplicable to the meshes from [34, 42] described

above [46] or give condition numbers dependent on the factor ε [33].

The above difficulties notwithstanding, we again propose to simply use the

mass matrix preconditioner P−1 from [5] to precondition the systems arising

from meshes such as the one shown in fig. 4. A scaling argument applied to

the usual two dimensional Schmidt’s inequality [15] on isotropic elements can

12

be used to deduce that

M ≤M + ε2S ≤

(
1 + cε2 p4

p2ε2

)
M (9)

≤ (1 + cp2)M. (10)

Consequently, using the mass preconditioner P−1 from [5], we have κ(P−1(M+

ε2S)) ≤ Cp2 with C independent of p, ε and the number of elements. The key

advantage of using the mass matrix is that the condition number is independent

of ε whereas alternative approaches result in a condition number depending on

ε−1 � 1.

2.4. Summary

In summary, applying high order methods to tackle the above prototypical

problems encounters the following challenges:

1. Calculation of the nonlinear moments, such as (u2
nvn, ~ϕ) and (sin z, ~ϕ), is

potentially inefficient. As discussed previously, bases which can utilize the

sum factorization technique are adept at computing moments and matrix-

vector products. In section 3.5, we will briefly discuss how the Bernstein

polynomials can use algorithms presented in [2] to calculate the nonlinear

moments and the residuals in O(p3) operations.

2. Transient problems will require the use of a time stepping scheme, which

results in the need to invert either the mass matrix or a perturbation

thereof. We propose to solve such systems efficiently by implementing

the ASM preconditioner developed in [5] using the Bernstein basis in sec-

tion 4. Furthermore, the foregoing discussion showed for the treatment of

the matrices arising in implicit time stepping schemes and from problems

where anisotropic elements are used, preconditioning the mass matrix can

be an effective approach.

3. Finally, once the simulation is complete, one typically wishes to either

visualize the solution or carry out post-processing to calculate quantities

13

of interest. We will exposit algorithms which can easily visualize and

post-process the solutions obtained using the Bernstein basis in section 3.

3. Visualization and Post-Processing

Bernstein-Bézier polynomials have played a fundamental role in the develop-

ment of computer graphics, splines, PS/TT fonts and computer-aided geometric

design (CAGD), resulting in a wealth of elegant and effective algorithms for the

visualization and graphical post-processing of polynomials written in Bernstein

form [18, 20]. In this section, we formally introduce the Bernstein polynomials

and give a brief overview of efficient O(p3) algorithms for the implementation of

post-processing procedures which are pertinent to finite element analysis (e.g.

point evaluation, visualization, and evaluations of quantities of interest).

3.1. Bernstein Polynomials

Let T be a non-degenerate triangle in R2 with vertices v1, v2, v3. For a fixed

integer p ≥ 3, we define the domain points as

Dp(T) =

{
1

p
(α1v1 + α2v2 + α3v3) : (α1, α2, α3) ∈ Ip

}
where the index set Ip = {α := (α1, α2, α3) ∈ Z3

+ :
∑3
k=1 αk = p}. It is natural

to classify the domain points into vertices, edges or interior points. The interior

domain points are those associated with α ∈ Ip with strictly positive compo-

nents. The vertex domain points are associated with the indices (p, 0, 0), (0, p, 0)

and (0, 0, p). Finally, the edge domain points are the remaining domain points;

see fig. 5.

The barycentric coordinates λi ∈ P1(T), i ∈ {1, 2, 3} of T are affine functions

such that λi(vj) = δij for i, j ∈ {1, 2, 3}. The bivariate Bernstein polynomials

of degree p associated with triangle T are then defined by

Bpα =
p!

α1!α2!α3!
λα1

1 λα2
2 λα3

3 , α ∈ Ip.

There is a natural one-to-one correspondence between Bernstein polynomials,

domain points and the index set Ip. Every Bernstein polynomial on a triangle

14

can be readily classified as an interior, an edge or a vertex polynomial in much

the same way as domain points. We denote by BpV , B
p
E , B

p
I as the sets of all

vertex, edge and interior Bernstein polynomials; see fig. 5.

V

E

E

V E E V

E

E

I

Figure 5: Figure showing domain points for degree p = 3 along with some plots of a typical

Bernstein polynomial corresponding to the domain points. V stands for vertex, E stands for

edge and I stands for interior.

Every polynomial u ∈ Pp(T) can be expressed in terms of degree p Bernstein

polynomials:

u =
∑
α∈Ip

cpαB
p
α

the so-called B-form of u. The coefficients cpα are usually referred to as the B-net

or control points by the graphics community [18].

Likewise, one can define the univariate Bernstein polynomials: let λ1, λ2 be

the barycentric coordinates of a point on the interval [a, b], then the univariate

Bernstein polynomials of degree p on the interval are defined as

Bpi =

(
p

i

)
λi1λ

p−i
2 , i = 0, . . . , p.

3.2. Point Evaluation using de Casteljau Algorithm

The de Casteljau algorithm is an elegant and stable recursive scheme for the

evaluation of a polynomial written in terms of Bernstein polynomials [18]. Given

15

the control points {cpα} of a polynomial u in B-form, we fix a point P ∈ T at

which we want to evaluate u, and let λ1, λ2, λ3 be the values of the barycentric

coordinates of P . The de Casteljau algorithm consists of recursively defining

points {ckβ} for k ∈ [0, . . . , p− 1] and β ∈ Ik by

ck(β1,β2,β3) := λ1c
k+1
(β1+1,β2,β3) + λ2c

k+1
(β1,β2+1,β3) + λ3c

k+1
(β1,β2,β3+1).

The recursion terminates with a single coefficient c0000 at a cost of O(p3) oper-

ations which, remarkably, coincides u(P); see fig. 6 for an example in the case

p = 3.

c3300

c3210

c3120

c3030 c3021 c3012 c3003

c3102

c3201

c3111

c2200

c2110

c2020

c2101

c2011 c2002

c2200

c2110

c2020 c2011 c2002

c2101

c1100

c1010 c1001

c1100

c1010 c1001

c0000

Figure 6: Example of applying de Casteljau algorithm to p = 3 case

The de Castlejau algorithm is the archetypal example of a pyramid algorithm

[22]. Specifically, if we stack the coefficients appearing in fig. 6 as shown in fig. 7,

in which each layer corresponds to the recursion level, we obtain a pyramid of

coefficients with cpα on the bottom and c0000 at the summit.

A key property of the de Castlejau algorithm is that the coefficients which

emerge on its three vertical faces of the pyramid satisfies the blossoming prop-

erty. In order to explain what this means, we first label the vertices corre-

sponding to domain points c3300, c
3
030, c

3
003 (i.e. the vertices of the triangle) as

A,B,C respectively and again fix the point P ∈ T corresponding to barycentric

coordinates λ1, λ2, λ3 as before (recall u(P) = c0000).

Blossoming is the property whereby the B-form polynomial defined by the

coefficients laid out in Triangle 1 in fig. 8 (the left face in fig. 7) equals the

16

restriction of u to the region 4ABP , i.e.

u1|4ABP = u|4ABP .

The same property holds true for 4BCP with coefficients as in Triangle 2, and

for 4ACP with coefficients from Triangle 3. In other words, we have

u(x)|4ABC =

u1(x) x ∈ 4ABP

u2(x) x ∈ 4BCP

u3(x) x ∈ 4ACP

.

A pseudo-code implementation of de Casteljau algorithm with the blossom-

ing coefficients stored can be seen in algorithm 1. Note that the blossoms for

the faces are a natural by-product of applying the de Casteljau algorithm.

c3300

c3210

c3120

c3030

c3021

c3012

c3003

c3201

c2200

c2110

c2020

c2011

c2002

c1100

c1010

c1001

c0000

Figure 7: Rearranging the de Casteljau algorithm to a pyramid in the p = 3 case. The interior

coefficients (such as c3111) are left out for clarity.

3.3. Visualization

While the de Casteljau algorithm is stable, using it to evaluate large num-

bers of points for plotting is not an efficient strategy (e.g O(p3) operations are

required for reach of the O(p2) points netting an overall cost of O(p5)). Con-

sequently, a standard technique to the rendering of Bernstein-Bézier surfaces

in the computer graphics community consists of plotting the surface obtained

17

Triangle 1: u1(x)

c3300, A

c3210

c3120

c3030, B c2020 c1010 c0000, P

c1100

c2200

c2110

Triangle 2: u2(x)

c3300, A

c2200

c1100

c0000, P c1001 c2002 c3003, C

c3102

c3201

c2101

Triangle 3: u3(x)

c0000, P

c1010

c2020

c3030, B c3021 c3012 c3003, C

c2002

c1001

c2011

Figure 8: Example of blossoming

by linearly interpolating the coefficients {cpα} of the Bernstein polynomial [18].

This B-net is a convex hull for the polynomial, and approximates the surface. If

higher resolution is needed than provided by the original B-net of the solution,

then the subdivision algorithm can be invoked to create a finer net which then

can be rendered in the same fashion.

A

B C

T

R

S

Figure 9: The subdivision algorithm: given the control points on 4ABC, we divide it into

four triangles 4ATS, 4TRS, 4TBR, and 4SRC whose control points equals the same

polynomial.

The subdivision algorithm consists of dividing the original triangle into four

triangles representing the same polynomial2; see fig. 9. Although the original

function remains unchanged, the B-net representing u now contains roughly

2We note that the de Casteljau algorithm with blossoming coefficients divides the triangle

into three triangles representing the same polynomial (assuming the point lies in the interior

of the triangle).

18

Algorithm 1 de Casteljau Algorithm (with blossoming coefficients)

Require: abc 2D array of the B-net of the polynomial of degree p

1: function decast(λ1, λ2, λ3,abc)

2: apc,abp := zeros((p+ 1, p+ 1)) . Stores blossoming data

3: apc = abc[:, 0] . Store first rows before overwriting

4: abp = abc[0, :]

5: for k = 0, . . . , p− 1 do

6: for i = 0, . . . , p− k − 1 do

7: for j = 0, . . . , i do . de Casteljau step

8: abc[j, i−j] = λ1abc[j, i−j]+λ2abc[j+1, i−j]+λ3abc[j, i−

j + 1]

9: end for

10: end for

11: apc[0 : p− k, k + 1] = abc[0 : p− k, 0] . Store the blossoming

coefficients before progressing to the next level

12: abp[k + 1, 0 : p− k] = abc[0, 0 : p− k]

13: end for

14: . apc and abp contains the B-net for triangles APC and ABP

respectively. See fig. 8.

15: return abc,apc,abp . abc contains the coefficients for pbc

16: end function

four times as many B-net points obtained at the cost of just four applications

of the de Casteljau algorithm with storage of the blossoming coefficients (see

algorithm 2) [21, §8.1]; see table 1 for a comparison in the cost of visualization

in terms of the number of operations needed per point when using de Casteljau

algorithm versus the subdivision algorithm.

The subdivision algorithm converges quadratically in the number of subdi-

vision levels `, in the sense that for a given triangle T with diameter hT , the

19

Table 1: Table to illustrate the benefit of using subdivision algorithm by displaying the cost

per point of visualization assuming O(1) number of subdivisions; typically, only two or three

subdivisions are needed for visual fidelity.

Method Number of Points Cost per Point Total Cost

de Casteljau O(p2) O(p3) O(p5)

Subdivision O(p2) O(p) O(p3)

error at the `th level of subdivision is

‖u− ū`‖∞ ≤
C

2`
‖∆u‖∞

for C independent of h, where u ∈ Pp(T) and ū` is the linear interpolation

of the `th level subdivided B-net [12, 13]. In fig. 10, we plot a B-net and its

subdivisions; we observe that two or three subdivisions is usually more than

enough for visual fidelity.

Once the subdivision step is completed, one can save the resulting B-net and

the domain points as VTK files in order that sophisticated visualization software

akin to Paraview or VisIt can easily process it. From here, robust algorithm in

those software packages can post-process the approximation including plotting

contour lines.

Algorithm 2 Subdivision Algorithm on a single triangle

Require: abc array of the coefficients of B-form polynomial of degree p

1: function subdivision(c)

2: ,abr,arc = decast(0, .5, .5,abc) . We use the blossoming coefficients

from algorithm 1; the notation means we do not use the result.

3: tbr, , = decast(.5, .5, 0,abr) . Obtain triangle TBR from fig. 9

4: src,ars, = decast(.5, 0, .5,arc) . Obtain triangle SRC from fig. 9

5: trs, ,ats = decast(1, 1,−1,ars) . point T is outside of 4ARS; this

step gives us the last two triangles of the subdivision.

6: return ats, trs, tbr, src

7: end function

20

Figure 10: Figures showing the refinements of the subdivision algorithm for p = 12 and 16

elements on the square for the initial condition of the sine-Gordon example. In general, the

number of refinements needed is only 2 or 3 depending on the order and size of the elements.

(a) 0 subdivisions (b) 1 subdivision (c) 2 subdivisions

The efficient rendering of the B-net can be accomplished using OpenGL

“evaluators” (see glEvalMesh2 in [44]). These OpenGL evaluators are defined

on a rectangular patch but a simple transformation of the coefficients on a

triangle to the rectangle can be employed [27, 50]. Unfortunately, in many

implementations, there is vendor and hardware dependent constant, namely

GL MAX EVAL ORDER, which sets the maximum order that OpenGL can plot,

which is often set to just p < 8.

3.4. Computation and Visualization of Gradients and Higher Derivatives of the

Solution

We now describe how to easily compute and visualize the gradient and higher

order derivatives from a B-form polynomial. The gradient of a Bernstein poly-

nomial can be expressed as a sum of Bernstein polynomials

∇Bpα = p

3∑
k=1

Bpα−ek∇λk (11)

where the sum is over when α − ek is a valid multi-index [3]. Let u be a given

polynomial expressed in B-form, then by eq. (11)

∇u =
∑
α∈Ip

cpα

p 3∑
k=1

Bpα−ek∇λk

 =
∑

β∈Ip−1

~c p−1
β Bp−1

β

21

Figure 11: Example vector plot of gradients for the sine-Gordon example at t = 5 with 2

subdivisions. Note that the gradient glyphs are superimposed over the plot of the sine-Gordon

solution.

where

~c p−1
β = p

3∑
k=1

cβ+ek∇λk ∀β ∈ Ip−1.

Hence, to compute the gradient, we compute ~c p−1
β from cpα at a cost of O(p2)

operations. One can then use the subdivision algorithm on ~c p−1
β componentwise

to plot the gradient. This results in a smaller B-net than by plotting the function

values (i.e. α ∈ Ip but β ∈ Ip−1).

In order to obtain the B-net of the gradient on the same set of control points

as the original approximate u, one would apply the Bernstein 2D degree raising

algorithm (algorithm 14) component-wise which allows one to express ~c p−1
β for

β ∈ Ip−1 as ~c pα for α ∈ Ip; the cost of degree raising is O(p2). See fig. 11 for

an example of superimposing the gradients over the solution, and algorithm 3

for the general visualization algorithm. In fact this procedure can be general-

ized to arbitrary order derivatives; for example, to visualize the Hessian and

superimpose it on the solution, one would have to first calculate the coefficients

c p−2
β appropriately, degree raise twice, then use the same subdivision algorithm

component-wise.

22

Algorithm 3 Function and Gradient Plotting Algorithm

Require: cpα coefficients of Bernstein polynomials

1: function Visualize(cpα)

2: Calculate ~c p−1
β from cpα

3: ~c pα = DegreeRaise2D(~c p−1
β) . Perform degree raising component-wise

4: Apply subdivision to cpα and component-wise to ~c pα

5: Plot the resulting Bézier net from the subdivision algorithms

6: end function

3.5. Evaluation of Quantities of Interest and Nonlinear Moments

In many practical problems, the quantity of interest is not point values but

rather some integral quantity of the solution u such as the L2 energy
∫

Ω
u2 dx,

H1 energy
∫

Ω
(u2 + |∇u|2) dx, the average displacement 1

|Ω|
∫

Ω
u dx etc [7]. In

general, quantities of interest can be expressed as

Q[u] =

∫
Ω

η(u,∇u) dx

for η a given, possibly non-linear, function.

The quantity Q[u] can be computed efficiently by exploiting the tensorial

nature of the Bernstein basis (Lemma 1 of [2]). Given the control points cαp

of the approximate u, we can apply algorithm 1 and eq (3.6) of [2] to directly

compute Q[u] for each element at a cost of O(p3) operations. Furthermore,

the tensorial property allows one to compute the residual and matrix-vector

products in O(p3) also. The following theorem from [2] is the key:

Theorem 3.1. In two dimensions, the nonlinear moments

~µT (u, f) =

∫
T

Bpα(x)f(x, u,∇u) dx ∀α ∈ Ip

where T is a simplex and f is an arbitrary nonlinear function can be computed

with a cost of O(p3).

Here, we want to emphasize that theorem 3.1 allows us to calculate the

nonlinear evaluation such as (sin z, ~ϕ) or (u2
nvn, ~ϕ) from section 2 in O(p3). It

is a straightforward application of the algorithm in Corollary 3 of [2].

23

Furthermore, we can calculate matrix-vector multiplication using µT ; for

example, the mass matrix product can be calculated as

~µT (u, 1) =

∫
T

Bpα(x)u(x) dx =

∫
T

Bpα
(∑
β∈Ip

cpβB
p
β

)
dx = (M~u)α ∀α ∈ Ip

where (M~u)α is the column corresponding to row α. We refer to [2] for efficient

techniques for the evaluation of matrix-vector products against the stiffness

matrix etc.

4. Linear Solver and Preconditioning

In section 3, we discussed computation of the residual and visualization in

O(p3) using the Bernstein basis; all that remains is inverting the mass matrix (or

a small perturbation thereof) in order to time-step. An unfortunate fact of the

Bernstein basis is that its mass matrix condition number is O(22pp−1/2) [31]; an

iterative solver will struggle, and direct solvers will lose many digits of accuracy.

In this section, we present the implementation of a uniform preconditioner in

both h and p [5] for the Bernstein basis mass matrix with a cost of O(p3)

operations.

We claim that we can simulate and post-process transient problems using

an explicit time-stepper (e.g. section 2.1) in O(p3) operations. Recall the error

at iteration n for conjugate gradient is bounded by(√
κ− 1√
κ+ 1

)n
‖~e0‖

where κ is the condition number of the preconditioned system and ~e0 is the initial

residual vector [23, p. 636]. As the condition number κ of the preconditioned

mass matrix is bounded uniformly, the number of iterations needed by conjugate

gradient to converge to a given tolerance ε is also bounded uniformly by a

constant K independent of p and h

K ≤ log
ε

‖~e0‖
/ log

√
κ− 1√
κ+ 1

24

Hence, to time-step up to time T using an ` step explicit time-stepper with ∆t

would require

T

∆t
`N · O(p3)→ O(p3)

operations total, including post-processing procedures.

4.1. Jacobi Polynomials

We use the standard definition of 1D Jacobi polynomial [1] for P
(a,b)
p where

p is the order and a, b > −1 are the weights. The orthogonality property is such

that ∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx

=
2α+β+1

2n+ α+ β + 1

(n+ α)!(n+ β)!

(n+ α+ β)!n!
δnm.

A key identity relating Jacobi polynomials and 1D Bernstein polynomials to-

gether is

P (a,b)
p =

n∑
i=0

(
p+a
i

)(
p+b
p−i
)

(−1)p−i
(
p
i

)Bpi . (12)

4.2. Additive Schwarz Preconditioner for Mass Matrix

We present a short review of the additive Schwarz preconditioner presented

in [5] for the mass matrix on a triangulation T of the domain Ω. Let X = {u ∈

H1(Ω) : u|K ∈ Pp(K),∀K ∈ T }. Define XK,I := Pp(K) ∩H1
0 (K) which is the

space of polynomial bubble functions on element K, and let XI = ∪K∈TXK,I .

We note that the interior Bernstein polynomials BpI is a basis for XI .

For each edge e ∈ T , let Ki be the elements such that e ∈ ∂Ki. Let

Xe := span {Bpα : α domain points strictly in e}

and define the edge spaces

X̃e :=
{
u ∈ Xe : (u,w) = 0 ∀w ∈ XI

}
.

25

A key property is that each element in X̃e and Xe can be uniquely determined

by its value restricted to e (see Lemma 5.1 of [5]).

For x ∈ [−1, 1], let

ν(x) =
(−1)bp/2c+1

bp/2c
1− x

2
P

(1,1)
bp/2c−1(x). (13)

For each vertex v ∈ T , let Ki be the elements such that v ∈ ∂Ki, let λi be the

barycentric coordinate of Ki such that λi(v) = 1. Define

ϕv(x) =

ν(1− 2λi) x ∈ ∪iKi

0 else

which has the property that ϕv(v) = 1, and ϕv(x) = 0 for all x ∈ Ω \ ∪iKi.

Furthermore, ϕv(x) on the edges on which it is supported is a scaling of ν. Now

define

XV := span {ϕv : v ∈ T }

and

X̃V := {u ∈ XV : (u,w) = 0 ∀w ∈ XI}

Similar to X̃e, the space X̃V is uniquely determined by the values on the vertices.

We can decompose X as

X = XI ⊕ X̃V ⊕
⊕
e∈T

X̃e.

We now define the bilinear form on the subspaces in the decomposition:

• Interior space XI :

aI(u,w) := (u,w), u, w ∈ XI .

• Vertex space X̃V :

aV (ũ, w̃) :=
1

p4

∑
v∈T

cvũ(v)w̃(v), ũ, w̃ ∈ X̃V .

where cv =
∑
Ki

area(Ki)
2 where Ki are the elements such that v ∈ ∂Ki.

26

• Edge spaces X̃e for all e ∈ T :

ae(ũ, w̃) := ce

p−2∑
n=0

qnµn(ũ)µn(w̃), ũ, w̃ ∈ X̃e

where ce =
∑
Ki

area(Ki)
2 where Ki are the elements such that e ∈ ∂Ki,

qn :=
2

(p+ 4 + n)(p− n+ 1)

∫ 1

−1

(1− x2)2P (2,2)
n (x)2 dx

=
64(n+ 1)(n+ 2)

(p+ 4 + n)(p− n+ 1)(2n+ 5)(n+ 3)(n+ 4)

(14)

and µn is the weighted moment given by

µn(u) :=
(2n+ 5)(n+ 3)(n+ 4)

32(n+ 1)(n+ 2)

∫ 1

−1

(1− x2)P (2,2)
n (x)u(x) dx

where we use a linear parametrization such that e = [−1, 1].

Given f ∈ X, the additive Schwarz method from [5] is:

(i) uI ∈ XI : aI(uI , vI) = (f, vI) ∀vI ∈ XI .

(ii) uV ∈ XV : aV (ũV , ṽV) = (f, ṽV) ∀ṽV ∈ X̃V .

(iii) For all edges e in T , ũe ∈ X̃e : ae(ũe, ṽe) = (f, ṽe) ∀ṽe ∈ X̃e.

(iv) u := uI + ũV +
∑
e∈T ũe is our solution.

The key result regarding the condition number is the following:

Theorem 4.1. The condition number of the above additive Schwarz method is

bounded by a constant C independent of h and p (Theorem 3.1 from [5]).

In the following sections, we discuss the implementation of each of the steps

of the ASM preconditioner using a Bernstein basis. Let ~BpV ,
~BpE ,

~BpI be respec-

tively the vectors such that its entries are the vertex, edge and interior Bernstein

polynomials on the mesh. We enumerate the basis analogous to [5]:

1. the vertex functions ~BpV in any order

2. the edge functions grouped by edges, and ordered by the multi-indices

27

3. the interior functions grouped by the element which they are supported

on

We can construct the mass matrix for the Bernstein basis on T in the following

block form

M =

MV V MV E MV I

MEV MEE MEI

MIV MIE MII

where the subscripts indicate the interaction between vertices (V), edges (E) or

interiors (I); the residual against the Bernstein polynomials ~f and solution ~x

vector can be blocked in a similar way as

f̄ =

~fV

~fE

~fI

 and x̄ =

~xV

~xE

~xI

 .
4.3. Interior Spaces

In this section, we give an efficient algorithm to solve

aI(u,w) = (f, w) ∀w ∈ XI . (15)

As XI is the direct sum of bubble functions on each individual element, we can

simply discuss the implementation on the reference element. For the sake of

conciseness, we leave all proofs in this section to the appendix.

We recall an orthogonal basis for Pp(K)∩H1
0 (K) is given by (see §2.1 of [5])

ψij(x, y) =
1− s

2

1 + s

2
P

(2,2)
i−1 (s)

(
1− t

2

)i+1
1 + t

2
P

(2i+3,2)
j−1 (t)

for 1 ≤ i, j, i+ j ≤ p− 1, where

s =
λ2 − λ1

1− λ3
, t = 2λ3 − 1

and λ1, λ2, λ3 are the barycentric coordinates of T . If we let

u(x, y) =

p−1∑
i=1

p−1−i∑
j=1

uijψij(x, y)

28

for coefficients uij , then plugging u(x, y) into eq. (15) with the test functions

w = ψlm(x, y), we see that uij =
(f,ψij)

‖ψij‖2 , hence the solution to eq. (15) is simply

u(x, y) =

p−1∑
i=1

p−1−i∑
j=1

(f, ψij)

‖ψij‖2
ψij(x, y) =

∑
|α|=p

cpαB
p
α. (16)

Since we are working with the Bernstein polynomials, the question is now a

matter of converting from the ψij basis to the Bernstein basis.

First, we rewrite the basis functions ψij as a multiple of λ1λ2λ3, and make

a change of variables on the indices obtaining

ψij |r=i−1,m−r=j−1 = λ1 λ2 λ3 P
(2,2)
r (s)

(
1− t

2

)r
P

(2r+5,2)
m−r (t),

for 0 ≤ r ≤ m and 0 ≤ m ≤ p− 3. The next lemma gives allows one to rewrite

the interior basis functions as a sum of Bernstein polynomials.

Lemma 4.2. Let 0 ≤ r ≤ m and 0 ≤ m ≤ p− 3. Then, it holds

P (2,2)
r (s)

(
1− t

2

)r
P

(2r+5,2)
m−r (t) =

∑
|α|=m

amrα Bmα (x, y),

where, for |α| = m

amrα =

 νmrα3
γr,m−α3
α2

, for α3 ≤ m− r,

0, otherwise,

and

νmrα3
= (−1)m−r−α3

(
m+r+5
α3

)(
m−r+2
m−r−α3

)(
m
α3

) ,

γr,m−α3
α2

=

m−r−α3∑
l=0

γrα2−l

(
m−r−α3

l

)(
r

α2−l
)(

m−α3

α2

) ,

γrj = (−1)r−j

(
r+2
j

)(
r+2
r−j
)(

r
j

) ,

for j = 0, . . . , r. Note that γrj are the Bernstein-Bézier coefficients of the one-

dimensional Jacobi polynomial P
(2,2)
r .

29

To obtain the Bernstein-Bézier coefficients cpα of u(x, y), we apply lemma 4.2

to eq. (16), obtaining

u(x, y) = λ1λ2λ3

p−3∑
m=0

m∑
r=0

∑
|α|=m

amα
(f, λ1λ2λ3B

m
α)

‖ψmr‖2
∑
|β|=m

amrβ Bmβ (x, y). (17)

We remark that the form given as above is the sum of Bernstein polynomials of

different orders; hence care must be taken to ensure that we express u(x, y) as

a sum of pth order Bernstein polynomials.

Considering that we are given the Bernstein moments fpα = (f,Bpα) of degree

p of a function f , we break down the calculations into 5 steps:

Step 1. Compute moments

f̃p−3
α = (f, λ1λ2λ3B

p−3
α),

for the data fp.

Step 2. Compute

Smr =
∑
|α|=m

amrα
f̃mα
‖ψmr‖2

, for r = 0, . . . ,m, m = 0, . . . , p− 3.

Step 3. Compute

Tmβ =

m∑
r=0

Smramrβ , for |β| = m, m = 0, . . . , p− 3.

Step 4. Compute coefficients cmα by raising the coefficients cm−1
α (if m > 0) to

degree m and adding them to Tm.

Step 5. Compute coefficients cpα from coefficients cp−3
α by multiplying by the inte-

rior bubble function, i.e.∑
|α|=m

cpαB
p
α = λ1λ2λ3

∑
|α|=p−3

cp−3
α Bp−3

α .

We will observe in the following sections that the costs of Steps 1, and 5

are of O(p2), and Step 4 is of O(p3). If we compute the sums in Steps 2 and

3 naively, we end up with a cost of O(p4). This is of course not optimal in the

30

sense that it does not match the computational complexity of other algorithms

in this paper. In the following subsections we present algorithms computing

Steps 1-5, in particular the algorithms for Steps 2 and 3 use recurrence relations

in the computations that allow us to achieve an optimal order. In summary, we

obtain an algorithm for computing the Bernstein-Bézier coefficients cpα of u(x, y)

of computational complexity of O(p3).

4.3.1. Computation of Step 1.

Since the residual vector ~fI = (f,Bpα) for α the index set corresponding to

the interior domain points, we then note that f̃p−3
α is obtained by

(f, λ1λ2 λ3B
p−3
α) =

(α1 + 1)(α2 + 1)(α3 + 1)

(p− 2)(p− 1)p
fpα+(1,1,1).

for |α| = p− 3 as

λ1λ2λ3B
p−3
α = λ1λ2λ3

(p− 3)!

α!
λα1

1 λα2
2 λα3

3 =
(α1 + 1)(α2 + 1)(α3 + 1)

(p− 2)(p− 1)p
Bpα+(1,1,1).

(18)

4.3.2. Computation of Step 2

We assume that f̃p−3
α is given from Step 1, then we compute Smr for r =

0, . . . ,m and m = 0, . . . , p− 3. Plugging in the definition of amrα , we have

Sm,r =
1

‖ψmr‖2
∑
|α|=m

amrα f̃mα =
1

‖ψmr‖2
m−r∑
α3=0

νmrα3

∑
α1+α2=m−α3

γr,m−α3
α2

f̃mα

:=
1

‖ψmr‖2
m−r∑
α3=0

νmrα3
Qmrα3

.

The key to decreasing the number of operations is to use recurrence relations

of the coefficients and moments. We claim that we can compute Qmrα3
and Smr

with the following strategy:

1. Compute Qmrα3
and Smr for α3 = 0, . . . ,m−r, r = 0, . . . ,m and m = p−3.

This has a cost of O(p3) as we have to iterate over α3 and r for each Qmrα3
,

then compute a sum of O(p). We remark that while we can precompute

and store the coefficients γr,m−α3
α2

, we can compute these coefficients using

a 1D degree raising algorithm (see lemma 7.1).

31

2. Compute recursively for m = (p− 3)− 1, . . . , 0:

Qmrα3
=
α3 + 1

m+ 1
Qm+1r
α3+1 +

m+ 1− α3

m+ 1
Qm+1r
α3

, α3 = 0, . . . ,m− r,

Smr =
1

‖ψmr‖2
m∑

α3=0

νmrα3
Qmrα3

,

for r = 0, . . . ,m.

This step also has a cost of O(p3) as we have to loop over m, r, α3 to

calculate Qmrα3
; Smr requires us to loop over m, r and sum over m.

We prove this recurrence relation in the appendix.

4.3.3. Computation of Step 3.

Similar to Step 2, we compute the terms Tmβ for each m using the following

strategy:

1. Compute Tmβ for |β| = m and β3 = 0.

Since we are looping over |β| = m such that β3 = 0, this loop is of O(p).

We also have to calculate the sum for Tmβ at each loop, which incurs a

cost of O(p). Finally, we would have to do this for each m, meaning the

final cost is of O(p3).

2. Compute for β3 = 0, . . . ,m− 1

Tmβ+e3 = −
(
β1 + 3

β3 + 3
Tmβ+e1 +

β2 + 3

β3 + 3
Tmβ+e2

)
,

for β2 = 0, . . . ,m− β3 − 1.

The cost here is clearly O(p3) as we need to loop over m, then over β2, β3.

4.3.4. Computation of Step 4.

We compute the coefficients cm by adding Tm and cm−1
α . We observe that

cm−1
α corresponds to coefficients of degree m− 1, then we use two dimensional

degree raising to carry out the operation (algorithm 14). The 2D degree raise

algorithm has a cost of O(p2); we need to do this for all m < p−3, hence a cost

of O(p3).

32

4.3.5. Computation of Step 5.

Similarly to Step 1, we obtain the coefficients cpα by using eq. (18)

cpβ+1 =
(β1 + 1)(β2 + 1)(β3 + 1)

(p− 2)(p− 1)p
cp−3
β ,

for |β| = p− 3.

We outline the procedure for computing the coefficients in algorithms 4 and

5.

Algorithm 4 Inversion of interior Bernstein mass matrix

Require: Interior Bernstein moments fpα = (f,Bpα), for |α| = p, and 0 < α < p

1: function M−1
II (fpα)

2: for |α| = p− 3 do . Step 1

3: f̃p−3
α = (α1+1)(α2+1)(α3+1)

(p−2)(p−1)p fpα+1

4: end for

5: cp−3
α = InteriorInverse (f̃p−3

α)

6: for |α| = p− 3 do . Step 5

7: cpα+1 = (α1+1)(α2+1)(α3+1)
(p−2)(p−1)p cp−3

α

8: end for

9: return cpα

10: end function

33

Algorithm 5 Computing interior coefficients

1: function InteriorInverse(f̃p−3
α)

2: n = p− 3 . For convenience

3: for r = 0, . . . , n do . Step 2: Initialize Qnr and Snr

4: γr,r = Jacobi (2,2)-Bernstein coefficients of degree r

5: α3 = n− r

6: Qn,rα3
= γr,r · f̃n·,α3

7: for α3 = n− r − 1, . . . , 0 do

8: γr,n−α3 = DegreeRaise(γr,n−α3−1)

9: Qn,rα3
= γr,n−α3 · f̃n·,α3

10: end for

11: Sn,r =
∑n−r
α3=0 ν

n,r
α3
Qn,rα3

/‖ψnr‖2

12: end for

13: for m = n− 1, . . . , 0 do . Step 2: Recursive portion

14: for r = 0, . . . ,m do

15: for α3 = 0, . . . ,m− r do

16: Qm,rα3
= (α3+1)

m+1 Qm+1,r
α3+1 + (m+1−α3)

(m+1) Qm+1,r
α3

17: end for

18: Sm,r =
∑m−r
α3=0 ν

m,r
α3

Qm,rα3
/‖ψnr‖2

19: end for

20: end for

21: for m = 0, n do

22: Tm·,0 =
∑m
r=0 S

m,rνm,r0 γr,m . Step 3: Initialize

23: for β3 = 0,m− 1 do

24: for β1 = 0,m− β3 − 1 do

25: β2 = m− (β3 + 1)− β1 . Step 3: Recursive portion

26: Tmβ+e3
= − (3+β1)

(3+β3)T
m
β+e1

− (3+β2)
(3+β3)T

m
β+e2

27: end for

28: end for

29: cm+ = Tm . Step 4

30: if m < n then

31: cm+1 = DegreeRaise2D(cm)

32: end if

33: end for

34: return cp−3
α

35: end function

34

4.4. Edge Spaces

In this section, we give efficient algorithms to solve ae(ũ, ṽ) = (f, ṽ) for all

ṽ ∈ X̃e for a given edge e. Without loss of generality, we assume that e = [−1, 1]

and that ce = 1. The key to the efficient solver on the edge space is to note that

the bilinear form ae only depends on the value restricted to e which allows us

to reformulate the problem over the space Xe rather than X̃e.

We break down the edge solver into four distinct steps

Step 1. Reduce the variational form to Xe

Step 2. Compute the residual

Step 3. Compute ae(~ϕ, ~ϕ) by using a change of basis

Step 4. Find the corresponding solution in X̃e.

4.4.1. Step 1.

Decompose ũe, ṽe ∈ X̃e into edge functions and bubble functions

ũe = ue + ub ṽe = ve + vb

where ue, ve ∈ Xe, ub, vb ∈ XI and (ub, wI) = −(ue, wI) for all wI ∈ XI , and

analogously for vb.

On the right hand side

(f, ṽe) = (f, ve) + (f, vb)

= (f, ve) + (uI , vb)

= (f, ve)− (uI , ve) + (uI , ṽe) = (f, ve)− (uI , ve).

where uI is the solution to (uI , wI) = (r, wI) for all wI ∈ XI (i.e. the solution

to the interior problem in section 4.3). We also used the fact that (wI , ṽe) = 0

for all wI ∈ XI by definition of X̃e.

For the bilinear form, we note that

ae(ũe, ṽe) = ae(ue, ve) = ae(ue|e, ve|e) ∀ṽe ∈ X̃e

35

where ue|e is the restriction onto e. Hence, we can first find ue ∈ Xe such that

ae(ue, ve) = (f, ve)− (uI , ve) ∀ve ∈ Xe, (19)

then use the orthogonality property to find ũe ∈ X̃e.

4.4.2. Computation of Step 2.

Let ~Bpe be the Bernstein edge polynomials corresponding to the domain

points on e (i.e. a basis for Xe), then we see that the right hand side of eq. (19)

is

(f, ~Bpe)− (uI , ~B
p
e) = ~fe −MeI~uI

where MeI the the mass matrix block corresponding to the interaction between

~Bpe and the interior Bernstein basis, and ~uI is vector B-form of the solution to

(uI , wI) = (f, wI) for all wI ∈ XI (section 4.3). We incur a cost of O(p3) here

due to the matrix multiply of MeI~uI .

4.4.3. Computation of Step 3.

Let

~ϕe =

(1− x2)P

(2,2)
0

...

(1− x2)P
(2,2)
p−2

 ;

~ϕe spans the same space as the univariate “interior” Bernstein polynomials (i.e.

space spanned by {Bp1 , . . . , B
p
p−1}). Due to orthogonality of Jacobi polynomials,

ae(~ϕe, ~ϕ
T
e) := Dee = diag(qn)

for 0 ≤ n ≤ p− 2 where qn is from eq. (14) (see §5.1 of [5]).

We use the crucial fact that bivariate Bernstein polynomials restricted to

the boundary are simply the univariate Bernstein polynomials [18]; hence Xe

restricted to e is simply the span of univariate interior Bernstein polynomials

36

{Bp1 , B
p
2 , . . . , B

p
p−1}. Let us introduce the change of basis matrix Γe such that

~ϕe = Γe(~Be|e) on e, then

Dee = ae(~ϕe, ~ϕ
T
e) = ae(Γe(~Be|e), (Γe(~Be|e))T) = Γeae(~Be, ~B

T
e)ΓTe .

The bilinear form under the Bernstein basis ae(~Be, ~Be) corresponds to Γ−1
e DeeΓ

−T
e .

In order to invert this, we need efficient ways to compute Γe and ΓTe .

Rather than store the matrix Γe, we present algorithms which can compute

their actions. For the action of Γe, we note that given a function f on e

~ϕe = Γe(~Be|e) =⇒ (f, ~ϕe) = Γe(f, (~Be|e)),

hence the operator Γe converts the residual from the 1D Bernstein basis to the

residual with respect to ~ϕe basis:

Γe :

(f,Bp1)

...

(f,Bpp−1)

→

(f, (1− x2)P
(2,2)
0)

...

(f, (1− x2)P
(2,2)
p−2)

and likewise ΓTe is the operator which converts the coefficients of a polynomial

expanded with ~ϕe into the B-form coefficients as follows:

ΓTe : (1− x2)

p−2∑
j=0

wjP
(2,2)
j (x)→

p−1∑
j=1

cjB
p
j (x).

The key identity to an efficient implementation of Γe is

(1− x2)P (2,2)
n = 4

n∑
i=0

(
n+2
i

)(
n+2
n−i
)

(−1)n−i
(
n
i

) i+ 1

n+ 1

n− i+ 1

n+ 2
Bn+2
i+1 , (20)

which is obtained from eq. (12) and eq. (25), hence

(f, (1− x2)P (2,2)
n) = 4

n∑
i=0

(
n+2
i

)(
n+2
n−i
)

(−1)n−i
(
n
i

) i+ 1

n+ 1

n− i+ 1

n+ 2
(f,Bn+2

i+1).

Thus, knowing (f,Bp1), . . . , (f,Bpp−1) allows us to calculate (f, (1 − x2)P
(2,2)
p−2).

A degree lowering operation (see algorithm 13) can then be used to obtain

(f,Bp−1
1), . . . , (f,Bp−1

p−2) which allows us to calculate (f, (1−x2)P
(2,2)
p−3). We can

37

recursively do this to figure out the rest of the residuals. The following function

performs Γe:

Algorithm 6 Γe: Converts (f,Bpi) into (f, (1− x2)P
(2,2)
i)

Require: ~b, a vector of length p− 1

1: function Gamma(b)

2: for i = p− 2 to 0 do

3: for j = 0, . . . , i do

4: o[i] = o[i] + 4
(i+2

j)(i+2
i−j)

(−1)i−j(i
j)
j+1
i+1

i−j+1
i+2 b[j]

5: end for

6: ~b := DegreeLower(~b) . Degree lower moments; cost of O(p)

7: end for

8: return ~o

9: end function

We note that Gamma clearly has a cost of O(p2).3

The key to computing ΓTe is to use eq. (20) again. Starting with w0, we can

find the coefficients with respect to B2
1 . We perform a degree raising operation

on the B2
1 coefficient to obtain the coefficients in B3

1 , B
3
2 . Now, we can use w1 to

find the coefficient with respect to B3
1 , B

3
2 and sum. We keep on degree raising,

and using eq. (20) to obtain the following algorithm for ΓTe :

3The coefficients can be computed with little cost by noting that

4

(i+2
j

)(i+2
i−j

)
(−1)i−j

(i
j

) j + 1

i + 1

i− j + 1

i + 2
= 4

(i + 2

j

) i− j + 1

(j + 2)(−1)i−j

hence one can either pre-computing the binomial coefficients up to order p, or updating the

binomial coefficients in the for loop for i on the fly while calculating Gamma

38

Algorithm 7 ΓTe : Converts the coefficients of a Jacobi polynomial to a B-form

coefficients

Require: w, a vector of length p− 1

1: function Gammatran(w)

2: Initialize o of length 1

3: for i = 0, . . . , p− 1 do

4: for j = 0, . . . , i do

5: o[i] = o[i] + 4
(i+2

j)(i+2
i−j)

(−1)i−j(i
j)
j+1
i+1

i−j+1
i+2 w[j]

6: end for

7: o = DegreeRaise(o) . Degree raise B-net; cost of O(p)

8: end for

9: return o

10: end function

Again, we see that Gammatran also have a cost of O(p2) as the coefficients

can be calculated as before. Hence, we can easily compute ΓTe D−1
ee Γe with cost

of O(p2) and efficiently compute the solution to the variational problem eq. (19)

~ue := ΓTe D−1
ee Γe(~fe −MeI~uI).

4.4.4. Step 4.

Finally, we recall ~ue from above corresponds to

ue ∈ Xe : ae(ue, ve) = (f, ve)− (uI , ve) ∀ve ∈ Xe

but the solution we need is ũe in X̃e with ũe = ue + ub. Recall that (ub, wI) =

−(ue, wI) for all wI ∈ XI , hence the interior correction can be computed by

~ub = −M−1
II MIe~ue.

This has a cost of O(p3) if we use algorithm 4.

4.5. Vertex Spaces

In this section, we discus how to solve the variational problem aV (ũv, w̃v) =

(f, w̃v) for ∀w̃v ∈ X̃V . We proceed similarly to the edge solves.

39

Step 1. Reduce the variational form to XV

Step 2. Perform change of basis, and calculate the residual

Step 3. Compute the bilinear form

Step 4. Find the corresponding solution in X̃V

4.5.1. Step 1.

Decompose ũv = uv + ub where uv ∈ XV , ub ∈ XI with a similar decompo-

sition for the test function w̃v. By the orthogonality property of X̃V , we have

that

(uv, wb) = −(ub, wb) ∀wb ∈ XI . (21)

and we also recall that

(uI , wb) = (f, wb) ∀wb ∈ XI . (22)

For the right hand side, we have again

(f, w̃v) = (f, wv) + (f, wb)

= (f, wv) + (uI , w̃v)− (uI , wv)

= (f, wv)− (uI , wv).

As aV (ũv, w̃v) = aV (uv, wv), we can find uv ∈ XV

aV (uv, wv) = (f, wv)− (uI , wv) ∀wv ∈ XV (23)

then use orthogonality properties to find ũv ∈ X̃V .

4.5.2. Step 2.

Unfortunately, XV is not simply the span of the Bernstein polynomials. For

an arbitrary vertex v ∈ T , we note that we can rewrite the basis function ϕv as

a linear combination of Bernstein polynomials

ϕv = Bpv + ~φTv ~B
p
E + ~χTv ~B

p
I (24)

40

where Bpv is the Bernstein vertex basis at vertex v, ~φv and ~χv are vectors of

appropriate coefficients. We will see that we need to compute ~φv, but not ~χv.

On the right hand side, using eq. (22) for an arbitrary vertex v ∈ T and the

fact that (uI , wI) = (f, wI) for all wI ∈ XI ,

(f, ϕv)− (uI , ϕv) = (f,Bpv + ~φTv ~B
p
E + ~χTv ~B

p
I)− (uI , B

p
v + ~φTv ~B

p
E + ~χTv ~B

p
I)

= (f,Bpv)− (uI , B
p
v) + (f, ~φTv

~BpE)− (uI , ~φ
T
v
~BpE)

= (~fV)v − (MV IuI)v + ~φTv (~fE −MEIuI)

where (~fV)v and (MV IuI)v is the row corresponding to Bpv . The key here is

that the interior component does not matter in the computation.

We need to compute ~φTv for all vertices v which are the coefficients such

that Bpv + ~φTv B
p
E on the edges equals ϕv. Without loss of generality, given a

vertex v, assume an edge e from v is parametrized to be [−1, 1]. We recall that

ϕv restricted to the edge is eq. (13), hence using eq. (12), and factoring in the

(1− x)/2 term,

ϕv(x)|e =
(−1)bp/2c+1

bp/2c

(
1− x

2

)
P

(1,1)
bp/2c−1(x)

=
1

bp/2c

bp/2c−1∑
j=0

(
bp/2c

bp/2c − 1− j

)
(−1)jB

bp/2c
j (x)

= Bp0(x) +

p−1∑
j=1

c̃jB
p
j (x).

Hence the coefficients we want are c̃j , which are the result of using the degree

raising formula on
(bp/2c
bp/2c−1−j

)
(−1)j .

Let φφφ be the matrix with columns the vector ~φv; algorithm 8 calculates φφφ by

first computing the coefficients for B
bp/2c
j , degree raising it to the appropriate

order Bpj , then place the coefficients in the appropriate degrees of freedom in φφφ.

We note that in line 9, we remove the first and last term as that corresponds to

the vertex terms. φφφ can be precomputed.

41

Algorithm 8 Computing the values of φφφ

1: φφφ = zeros(numbers of dofs on edges,number of vertices) . Initialize Matrix

2: q := bp/2c

3: for i = 0 to q do

4: ~c[i] = (−1.0)i

q

(
q

q−1−i
)

. Generate lower-order coefficients

5: end for

6: for i = 0, . . . , p− q − 1 do

7: ~c = DegreeRaise1D(~c)

8: end for

9: ~c = ~c[1 : p− 1] . Remove first and last term; length of p− 1

10: for K ∈ T do

11: for vertex vi in K do

12: Let vj , vk be the two other vertices of K

13: ~d1 := DOFs on edge from vertex vi to vj

14: ~d2 := DOFs on edge from vertex vi to vk

15: φφφ[~d1,dof of vi] = ~c . Set an array equal to another array

16: φφφ[~d2,dof of vi] = ~c

17: end for

18: end for

4.5.3. Step 3.

The matrix form of the bilinear form is trivial as

aV (ũv, w̃v) = aV (uv, wv) =
1

p4
cv

where cv is a diagonal matrix with cv as its entries. With the matrixφφφ computed,

we can solve for eq. (23) with the following

1

p4
cv ~ϕv = ~fV −MV I~uI +φφφT (~fE −MEI~uI).

The cost to compute ~ϕv is dependent on the number of vertices, but the main

cost is O(p3) due to the matrix-vector multiply of MEI~uI .

42

4.5.4. Step 4.

Finally, the solution vector ~ϕv is under the ϕv basis of XV so we have

to manipulate this solution in order to find the corresponding solution in X̃V

expanded with the Bernstein basis.

Using eq. (24), the coefficient ~uv for BpV is simply ~ϕv, and the coefficients

for the edge Bernstein polynomials are ~uE = φφφ~ϕv.

As for the interior bubble functions, we recall the orthogonality condition

eq. (21). Hence, we do not need to compute ~χTv , but only the following varia-

tional problem for all wb ∈ XI

(~uTv B
p
V + ~uTEB

p
E , wb) = −(~uTb B

p
I , wb) =⇒ MIV ~uv + MIE~uE = −MII~ub

and and hence ~ub = −M−1
II MIV ~ϕv −M−1

II MIEφφφ~ϕv. The cost to compute this

is O(p3) if we use algorithm 4.

4.6. Matrix Formulation

Collecting the algorithms above, we can finally display the algorithm to

precondition the mass matrix of the Bernstein basis. Let the local assembly

matrix ΛK be written in block form

ΛK =

ΛK,V

ΛK,E

ΛK,I

where the blocks correspond to the vertex, edge and interior basis functions on

element K, then let the matrices DEE and DV V be diagonal matrices defined

as

DV V =
∑
K∈T

|K|
2p4

ΛK,V ΛT
K,V and DEE =

∑
K∈T

|K|
2

ΛK,ED̂EEΛT
K,E

where

D̂EE = block diag(D̂
(1)
EE , D̂

(2)
EE , D̂

(3)
EE)

43

for D̂
(i)
EE , i = 1, 2, 3 is the diagonal matrix D̂

(i)
EE = diag(qj), with qj defined from

eq. (14) for j = 0, . . . , p − 2. We let ΓEE and ΓTEE simply be the applications

of algorithms Γe,Γ
T
e repeatedly for each edge.

Then, we can formulate the additive Schwarz preconditioner as

Algorithm 9 P: Preconditioner for the Bernstein Basis Mass Matrix

Require: M global mass matrix, ~f residual vector

1: function

2: ~xI := M−1
II
~fI . Interior solve using section 4.3

3: ~xE := Γ−TEED−1
EEΓ−1

EE

(
~fE −MEI~xI

)
. Edges solve

4: ~xV := D−1
V V

(
(~fV −MV I~xI) +φφφT

(
~fE −MEI~xI

))
. Vertices solve

5: ~xE := ~xE +φφφ~xV

6: ~xI := ~xI −M−1
II MIV ~xV −M−1

II MIE~xE . Interior correction

7: return x := [~xV ; ~xE ; ~xI]

8: end function

4.7. Schur Preconditioner

In this subsection, we present a variation of the above algorithm which is

more suited for explicit time-stepping such as the Nyström method or an ex-

plicit Runge-Kutta method. We first let M be the global mass matrix with the

Bernstein basis, and block the matrix as follows

A =

MV V MV E

MEV MEE

 ,B =

MV I

MEI

 , and C =
[
MII

]
.

One way of solving M~x = ~f is to use the Schur complement method (otherwise

known as static condensation [49]) by first solving the boundary values:

S̈

~xV
~xE

 =

~fV
~fE

−BC−1 ~fI =

~fV −MV IM
−1
II
~fI

~fE −MEIM
−1
II
~fI

where S̈ = A − BC−1BT , then substitute the solution back to solve for the

interior ~xI .

44

In the case of an explicit time-stepping scheme, we are able to solve for the

right-hand side (e.g. ~fV −MV IM
−1
II
~fI) exactly using section 4.3 and work with

the exact Schur complement of the mass matrix.4 Hence, rather than using con-

jugate gradient over the mass matrix, we can simply iterate (and precondition)

on the smaller Schur complement then substitute back into the interior dofs.

This idea was first mentioned in Remark 2.7 of [10].

The Schur complement preconditioner is the “middle” portion of algorithm 9

and is presented in algorithm 10 independently. Here, we again emphasize that

using the Bernstein basis allows for matrix-free computation of the matrix-vector

product [2], which coupled with the inversion of the interior blocks section 4.3

allows for matrix-free Schur complement products. Finally, the preconditioner

for the whole mass matrix based on preconditioning the Schur complement is

presented in algorithm 11.

Algorithm 10 P̈−1: Preconditioner for Schur Complement

Require: ~f residual vector

1: function

2: ~xE := Γ−TEED−1
EEΓ−1

EE

(
~fE

)
. Edges solve

3: ~xV := D−1
V V

(
~fV +φφφ~fE

)
. Vertices solve

4: ~xE := ~xE +φφφ~xV

5: return x := [xV ;xE]

6: end function

4This is contrasted against an implicit time-stepping scheme where the right hand side

in the Schur complement method will requires (MII + cSII)−1 which cannot be as easily

computed exactly as MII .

45

Algorithm 11 P̃: Preconditioner for Mass Matrix using P̈−1

Require: M global Bernstein mass matrix, S̈ Schur complement of Bernstein

basis, ~f residual vector

1: function

2: ~xI := M−1
II
~fI . Interior solve

3: f̃V = ~fV −MV IM
−1
II f̄I . Find right-hand sides for Schur complement

4: f̃E = ~fE −MEIM
−1
II f̄I

5: [~xV ; ~xE] := pcg(S̈, [f̃V ; f̃E],Preconditioner = P̈−1) . Iterate the

boundaries

6: ~xI := ~xI −M−1
II MIV ~xV −M−1

II MIE~xE . Interior correction

7: return x := xI + xE + xV

8: end function

5. Illustrative Numerical Examples

5.1. Brusselator and Implicit Time-Stepping

We now illustrate the use of the preconditioner in the numerical solution of

the Brusselator system. Let u(x, y, t) and v(x, y, t) be the solution to the Brus-

selator system with initial conditions and time-stepping scheme as described in

section 2.2. The spatial discretization is a uniform triangulation of the square

with 256 elements.

In table 2, we show the [min, median, max] of the iteration counts of the

preconditioned conjugate gradient (PCG) method required to solve for both

u(x, y, t) and v(x, y, t) separately. We note that while we are preconditioning

a perturbation of the mass matrix, the choice of ∆t ∼ h2

p2 and a good initial

iterate seems to allow us to have non-increasing iteration counts as opposed

to the O(p2) growth shown in section 2.2. This is partly due to the fact that

the diffusion coefficient is so small, and the fact that we are using the previous

time-step as the initial iterate for PCG.

We also will use this case study to showcase the advantages of using the

Bernstein basis in calculating the critical nonlinear moments at each time-step as

46

mentioned in section 3.5. In fig. 12, we plot the average number of milliseconds

required to calculate the nonlinear moment (u2
nvn, ~ϕ) at each time step.5 We

note that while [2] indicated that the asymptotic cost is O(p3), in the range of

p ∈ [3, . . . , 20], we instead see a better cost growth of only O(p2).

Table 2: Table to illustrate the performance of the preconditioned iterative method to the

matrix resulting from a IMEX scheme by displaying the [min, median, max] iteration count

of the PCG solves for the variable u and v in a period of 10 seconds on 256 elements for the

Brusselator in a uniformly triangulated square. Our scaling for ∆t is such that ∆t ∼ 1
p2

.

p ∆t Iteration count u Iteration count v

4 1/10 [22, 25, 28] [24, 27, 31]

8 1/40 [19, 22, 26] [20, 23, 27]

12 1/90 [18, 21, 24] [20, 22, 26]

16 1/160 [18, 21, 26] [19, 23, 26]

20 1/250 [18, 22, 27] [20, 23, 27]

5.2. Sine-Gordon and Explicit Time-Stepping

We now illustrate the use of the preconditioner in the numerical solution of

the sine-Gordon equation, using an explicit time-stepping scheme which requires

the inversion of the exact mass matrix at each step. Let u(x, y, t) be the solution

to the sine-Gordon equation using the fourth order Nyström method [25, p.

285] as described in section 2.1. We use a uniform triangulation of the square

[−7, 7]× [−7, 7] in the spatial dimension.

In order to time-step, we use PCG with the initial iterate to be the previous

time step (or sub-step). In table 3, we display the [min, median, max] iteration

count for all 3000 PCG calls required to time step 10 seconds. As in [5], we

expect the number of iterations to not increase as we refine the mesh or increase

p. Indeed, we see that the median iteration counts in table 3 is the same as

5Timings were done using Python 3 with the key kernels from [2] written in Cython on an

Ryzen 5 1600 processor and 16GB of Ram

47

5 10 15 20

102

102.5 1

2

p

M
il

li
se

co
n

d
s

Time per moment eval.

Figure 12: The average time required to compute the non-linearity in the Brusselator system

is plotted on a log-log axis. We note that for the orders we are examining, the growth is O(p2)

rather than the asymptotic growth of O(p3) from [2]. The asymptotic growth is observed for

p > 30 (see [2]).

the iteration counts as in the linear wave equation considered in [5]; this is not

an unexpected result as only the residuals have changed from the linear heat

equation.

While the above result is certainly favorable, the case of explicit time-

stepping allows for the use of the preconditioner of just the Schur complement

as described in section 4.7. In table 4, we display the iteration count of solving

the Schur complement (i.e. the iteration counts of line 5 of algorithm 11) in

the period of 10 seconds for solving the sine-Gordon equation. We note that

the iteration count does not increase as we refine h or p which we prove in

section 7.1.

Finally, we will use the Sine-Gordon example to demonstrate that PCG is

achieving the required accuracy. In section 5.2, we plot the residual of each

iteration from PCG of the first linear solve at t = 0 for 64 elements; the residual

decreases quite nicely and we achieve a tolerance of 10−9 easily. In fact, we note

that the number of iterations decreases as p increases which matches table 3

48

(a) p = 4 (b) p = 8 (c) p = 16

Figure 13: Plots of the solution to the Brusselator example at t = 5 with the z-axis scaled by

a factor of .1 and time-steps as in table 2.

and table 4.

Table 3: Table illustrates the performance of the preconditioned iterative method of the mass

matrix at each time step by displaying the [min, median, max] iteration count of all 3000

PCG solves from using the Nyström method for a period of 10 seconds with a ∆t = .01 in a

uniformly triangulated square for the sine-Gordon equation.

Order 16 Elements 64 Elements 256 Elements

4 [21, 26, 32] [20, 25, 34] [17, 23, 31]

8 [17, 23, 29] [16, 21, 30] [16, 21, 26]

12 [17, 22, 27] [16, 18, 26] [17, 17, 24]

16 [16, 18, 25] [15, 18, 24] [15, 15, 22]

20 [16, 18, 24] [15, 15, 23]

5.3. Boundary Layer Problems

We now illustrate the use of the preconditioner in the numerical solution of a

boundary layer problem. Let u(x, y) be the solution to the problem as described

in section 2.3 with f = 1. In [5], we remarked that our mass preconditioner

allows for needle elements, hence we showcase this capability by using the mesh

as shown in fig. 4.

In fig. 15, we plot the condition number of the preconditioned system P−1/2(M+

ε2S)P−1/2. We observe that the growth of the condition numbers grows as p2

as eq. (9) suggests, and that for ε small enough, that the condition numbers do

49

Table 4: Table illustrates the performance of the preconditioner based on the Schur comple-

ment of the mass matrix at each time step by displaying the [min, median, max] iteration count

of the Schur complement solve (line 5 of algorithm 11) from using the Nyström method for a

period of 10 seconds with a ∆t = .01 in a uniformly triangulated square for the sine-Gordon

equation.

Order 16 Elements 64 Elements 256 Elements

4 [22, 27, 33] [21, 26, 35] [18, 24, 32]

8 [18, 24, 30] [17, 22, 31] [17, 22, 27]

12 [18, 23, 28] [17, 19, 27] [17, 18, 25]

16 [17, 19, 26] [1, 19, 25] [16 ,16, 23]

20 [1, 18, 25] [1, 16, 24]

not depend on ε.

6. Conclusion

The current work described the efficient implementation of a p-version mass

matrix preconditioner using the Bernstein basis, alongside useful post-processing

procedures such as visualization and gradient evaluations. Of particular note is

an algorithm to invert the interior blocks of the mass matrix in O(p3) opera-

tions. This allowed us to perform the preconditioning step with a total cost of

O(p3), hence, combined with the results from [2], allows for one to construct the

mass and stiffness matrices, time step, and perform post-processing of nonlin-

ear transient problems all with a cost of O(p3). While preconditioning the mass

matrix will offer no advantages for problems where only the stiffness matrix is

present, we also showed that certain elliptic problems such as the singularly per-

turbed problem can be handled by a preconditioner for the mass matrix. Some

of the algorithms does extend naturally to tetrahedrons such as the de Casteljau

algorithm, and the Bernstein basis matrix construction and multiplies from [2].

Unfortunately, neither the mass preconditioner in 3D or the interior inversion

algorithm extend as easily to 3D and will be the subject of a forthcoming work.

50

0 10 20 30

10−9

10−7

10−5

10−3

10−1

101

Iterations

R
es

id
u

al

p = 4

p = 8

p = 12

p = 16

p = 20

Figure 14: Plot of the residuals resulting from the preconditioned conjugate gradient method

applied to the Sine-Gordon example at t = 0 and 64 elements.

7. Appendix

7.1. Schur Complement Preconditioner

In this section, we present a short proof that the preconditioner for the

Schur complement (algorithm 10) has bounded condition numbers. Like in

[5], it suffices to show the result on the reference triangle. Let X̃B , X̃V and

X̃Ei , i = 1, 2, 3 be the minimal L2 extension space as defined in §5 of [5], with

the inner-products as aV (·, ·) and aEi(·, ·) from the same section.

The additive Schwarz method preconditioner which arises is given f̃ ∈ X̃B ,

find u as follows:

1. uV ∈ X̃V : aV (uV , vV) = (f̃ , vV) ∀vV ∈ X̃V .

2. For i = 1, 2, 3, uEi
∈ X̃Ei

: aEi
(uEi

, vEi
) = (f̃ , vEi

) ∀vEi
∈ X̃Ei

.

3. u := uV +
∑3
i=1 uEi

is our solution.

Note that it is simply what we had in [5], except the interior solve is not there;

this leads to a simple corollary.

51

5 10 15 20

500

1000

2000

3000
1

2

p

C
on

d
it

io
n

N
u

m
b

er

ε2 = 1E-05

ε2 = 1E-07

ε2 = 1E-09

ε2 = 1E-11

ε2 = 1E-13

Figure 15: The condition numbers of the preconditioned system for the boundary layer prob-

lem using the mesh in fig. 4 are displayed for varying ε and p in a log-log scale. We note that

the growth of the condition number satisfies the Schmidt’s inequality estimate, and that as

we decrease ε, the condition number seems to converge to a curve.

Corollary 7.0.1. The abstract additive Schwarz method defined above corre-

sponds to algorithm 10 under the Bernstein basis. Furthermore, there exists a

constant C independent of h, p such that cond(P̈−1S̈) ≤ C.

Proof. Let us first prove that the abstract ASM has uniform condition number.

We see that Lemma 5.3, Lemma 5.4 and Theorem 5.5 can be easily modified to

reflect the ASM method above by removing the interior portions from each of

the statements; hence this is simply a consequence of Theorem 2.7 of [47].

Finally, applying the exact same techniques from section 4.4 and section 4.5,

keeping in mind that we are given f̃ ∈ X̃B , we see that the ASM method

corresponds to algorithm 10.

7.2. Dirichlet boundary condition

The enforcement of Dirichlet boundary conditions is trivial to implement

for the preconditioner. In algorithm 9, before the interior correction term (line

52

6), simply set the degrees of freedom in ~xV , ~xE corresponding to the Dirichlet

boundary condition equal to the appropriate Bernstein basis values; in our case

for the boundary layer case study, this was simply 0.

The more mathematically accurate way would be to modify the diagonal

scaling matrices DV V ,DEE to be 1 at the Dirichlet boundary condition dofs

and also use the modified mass matrix (zeroing out the rows and columns and

leaving a one on the diagonal) for Dirichlet boundary conditions, the fact that

the edge solve and vertex solve are diagonal allows us to use the procedure

above.

7.3. Degree Raising Algorithms

The degree raising formula for the 1D Bernstein polynomials is easily derived:

Bpi (x) = (λ1 + λ2)Bpi (x) =
p+ 1− i
p+ 1

Bp+1
i (x) +

i+ 1

p+ 1
Bp+1
i+1 (x). (25)

This allows us to express a Bernstein basis polynomial of degree p as one of

degree p+ 1 as such

p∑
i=0

cpiB
p
i (x) =

p+1∑
i=0

cp+1
i Bp+1

i (x).

The following subroutine computes cp+1
i in O(p):

Algorithm 12 Degree Raising Operator

Require: ~c corresponding to the B-net of the polynomial of degree p

1: function DegreeRaise1D(~c)

2: ~o = zeros(p+ 2) . Coefficients for degree p+ 1

3: for i = 0, . . . , p do

4: o[i]+ = (p+ 1− i)c[i]/(p+ 1)

5: o[i+ 1]+ = (i+ 1)c[i]/(p+ 1)

6: end for

7: return ~o

8: end function

53

An equally useful operation is the “degree-lowering operation,” which is the

opposite of the degree raising operation. This is only used when we are working

with inner-products; for example, for a function g, we can deduce (g,B3
i) for

i = 0, . . . , 3 given (g,B4
j) for j = 0, . . . , 4. The degree lowering operator also

has a cost of O(p) as it is simply the degree raising operator backwards.

Algorithm 13 Degree Lowering Operator

Require: ~c corresponding to the inner-products (f,Bp+1
i) of Bernstein polyno-

mial of degree p+ 1

1: function DegreeLower(~c)

2: ~o = zeros(p+ 1) . Coefficients for degree p

3: for i = 0, . . . , p do

4: o[i] = ((p+ 1− i)c[i] + (i+ 1)c[i+ 1])/(p+ 1)

5: end for

6: return ~o

7: end function

In two dimensions, the Bernstein polynomials also satisfy a degree raising

operation. Let ek ∈ R3 be one at the kth index, and zero elsewhere. We have

that

Bpα = (λ1 + λ2 + λ3)Bpα =
α1 + 1

p+ 1
Bp+1
α+e1 +

α2 + 1

p+ 1
Bp+1
α+e2 +

α3 + 1

p+ 1
Bp+1
α+e3 .

If we store the control points {cpα} in a 2D array, then the following algorithm

performs degree raising in O(p2):

54

Algorithm 14 2D Degree Raising Operator

Require: c array of the B-net of the polynomial of degree p

1: function DegreeRaise2D(c)

2: o = zeros((p+ 2, p+ 2)) . Coefficients for degree p+ 1

3: for i = 0, . . . , p do

4: for j = 0, . . . , p− i do

5: k = p− i− j

6: o[i, j]+ = (k + 1)/(p+ 1) ∗ c[i, j]

7: o[i+ 1, j]+ = (i+ 1)/(p+ 1) ∗ c[i, j]

8: o[i, j + 1]+ = (j + 1)/(p+ 1) ∗ c[i, j]

9: end for

10: end for

11: return ~o

12: end function

There are many more mathematical and computational properties of Bern-

stein polynomials which we do not not need; a general reference can be found

in [18].

7.4. Proofs for section 4.3

In this subsection, we prove the lemmas used in section 4.3. We first prove

lemma 4.2.

Proof of lemma 4.2. We begin observing that eq. (12) gives

P 2r+5,2
m−r (t) =

m−r∑
α3=0

(−1)m−r−α3

(
m+r+5
α3

)(
m−r+2
m−r−α3

)(
m−r
α3

) Bm−rα3
(t)

=

m−r∑
α3=0

νmrα3

(
m

α3

)
(λ1 + λ2)

m−r−α3 λα3
3 ,

55

and

P (2,2)
r (s)

(
1− t

2

)r
=

r∑
α2=0

(−1)r−α2

(
r+2
α2

)(
r+2
r−α2

)(
r
α2

) Brα2
(s)

(
1− t

2

)r
=

r∑
α2=0

γrα2

(
r

α2

)
λr−α2

1 λα2
2 .

Using the binomial formula and with the convention γri = 0 for i < 0 and i > r,

we can write

(λ1 + λ2)m−r−α3P (2,2)
r (s)

(
1− t

2

)r
=

m−r−α3∑
l=0

(
m− r − α3

l

)
λm−r−α3−l

1 λl2

r∑
α2=0

γrα2

(
r

α2

)
λr−α2

1 λα2
2

=

m−r−α3∑
l=0

(
m− r − α3

l

) r+l∑
α2=l

γrα2−l

(
r

α2 − l

)
λm−α3−α2

1 λα2
2

=

m−α3∑
α2=0

m−r−α3∑
l=0

γrα2−l

(
m−r−α3

l

)(
r

α2−l
)(

m−α3

α2

)
(m− α3

α2

)
λm−α3−α2

1 λα2
2 .

Therefore,

P (2,2)
r (s)

(
1− t

2

)r
P 2r+5,2
m−r (t)

=

m−r∑
α3=0

νmrα3

m−α3∑
α2=0

γr,m−α3
α2

(
m− α3

α2

)(
m

α3

)
λm−α3−α2

1 λα2
2 λα3

3

=

m−r∑
α3=0

νmrα3

m−α3∑
α2=0

γr,m−α3
α2

Bmα (x, y),

which proves the identity.

7.4.1. Proofs for the recursive computation of Smr (and Qmrα3
)

We first show an auxiliary result concerning the coefficients γrjα2
from lemma 4.2.

Lemma 7.1. Consider γrjα2
, j = r, . . . ,m and r = 0, . . . ,m introduced in

lemma 4.2. Then,

γr,j+1
α2

=
α2

j + 1
γr,jα2−1 +

j + 1− α2

j + 1
γr,jα2

, for α2 = 0, . . . , j + 1,

i.e. ~γr,j+1 = R(~γr,j) for j = r, . . . ,m − 1., where R denotes the degree raising

operator in one dimension (algorithm 12).

56

Proof. By the properties of the binomial coefficients, we have that

α2

j + 1
γr,jα2−1 +

j + 1− α2

j + 1
γr,jα2

=

j−r∑
l=0

γrα2−1−l

(
j−r
l−1

)(
r

α2−1−l
)(

j+1
α2

) +

j−r∑
l=0

γrα2−l

(
j−r
l

)(
r

α2−l
)(

j+1
α2

)
=

j+1−r∑
l=1

γrα2−l

(
j−r
l−1

)(
r

α2−l
)(

j+1
α2

) +

j−r∑
l=0

γrα2−l

(
j−r
l

)(
r

α2−l
)(

j+1
α2

)
=

j+1−r∑
l=0

γrα2−l

(
r

α2−l
)(

j+1
α2

) ((j − r
l − 1

)
+

(
j − r
l

))
= γr,j+1

α2

which completes the proof.

Lemma 7.2.

Qmrα3
=
α3 + 1

m+ 1
Qm+1r
α3+1 +

m+ 1− α3

m+ 1
Qm+1r
α3

,

for α3 = 0, . . . ,m and r = 0, . . . ,m.

Proof. We use the two dimensional degree raise operator on the coefficients f̃mα

and and lemma 7.1

Qmrα3
=

∑
α1+α2=m−α3

γr,m−α3
α2

f̃mα

=
∑

α1+α2=m−α3

γr,m−α3
α2

(
α1 + 1

m+ 1
f̃m+1
α+e1 +

α2 + 1

m+ 1
f̃m+1
α+e2 +

α3 + 1

m+ 1
f̃m+1
α+e3

)
=
m+ 1− α3

m+ 1

∑
α1+α2=m+1−α3

(
α1

m+ 1− α3
γr,m−α3
α2

+
α2

m+ 1− α3
γr,m−α3

α2−1

)
f̃mα

+
α3 + 1

m+ 1
Qm+1 r
α3+1

=
m+ 1− α3

m+ 1

∑
α1+α2=m+1−α3

γr,m+1−α3
α2

f̃m+1
α +

α3 + 1

m+ 1
Qm+1 r
α3+1

=
m+ 1− α3

m+ 1
Qm+1 r
α3

+
α3 + 1

m+ 1
Qm+1 r
α3+1 .

7.4.2. Proofs for the recursive computation of Tmβ

We first need to prove a fact for the coefficients amrα .

57

Lemma 7.3. Consider the coefficients amrα , r = 0, . . . ,m. Then, the following

identity holds

(α1 + 3)amrα+e1 + (α2 + 3)amrα+e2 + (α3 + 3)amrα+e3 = 0,

for |α| = m− 1.

Proof. We observe that the statement is indeed equivalent to

(m− α3 − α2 + 2)γr,m−α3
α2

+(α2 + 3)γr,m−α3

α2+1 = −(α3 + 3)
νmrα3+1

νmrα3

γr,m−α3−1
α2

=
(m− α3 + r + 5)(m− α3 − r)

m− α3
γr,m−α3−1
α2

,

which we now prove.

For any 0 ≤ α2 ≤ m− 1, we proceed by induction on α3 = 0, . . . ,m− 1− r

(equivalently m − α3 = r + 1, . . . ,m) as amrα = 0 for α3 > m − 1 − r. We first

prove the statement for m− α3 = r + 1, i.e., we prove the identity

(r + 3− α2)γr,r+1
α2

+ (α2 + 3)γr,r+1
α2+1 =

2(r + 3)

r + 1
γr,rα2

.

We first note that γr,rα2
= γrα2

. We note that

γrα2−1 = − (α2 + 2)

(r + 3− α2)
γrα2

, for α2 = 1, . . . , r + 1,

and by lemma 7.1

γr,r+1
α2

=
α2

r + 1
γrα2−1 +

r + 1− α2

r + 1
γrα2

, for α2 = 0, . . . , r + 1.

Thus, it follows

(r + 3− α2)γr,r+1
α2

+ (α2 + 3)γr,r+1
α2+1

= (r + 3− α2)

(
α2

r + 1
γrα2−1 +

r + 1− α2

r + 1
γrα2

)
+ (α2 + 3)

(
α2 + 1

r + 1
γrα2

+
r − α2

r + 1
γrα2+1

)
=

2(r + 3)

r + 1
γrα2

.

We now assume the statement is true for n > r, i.e.,

(n+ 2− α2)γr,nα2
+ (α2 + 3)γr,nα2+1 =

(n+ r + 5)(n− r)
n

γr,n−1
α2

,

58

and we prove it for n+ 1, i.e., we prove the identity

(n+ 3− α2)γr,n+1
α2

+ (α2 + 3)γr,n+1
α2+1 =

(n+ r + 6)(n+ 1− r)
n+ 1

γr,nα2
.

Arrangement of the inductive hypothesis gives

γr,nα2−1 =
1

(n+ 3− α2)

(
(n+ r + 5)(n− r)

n
γr,n−1
α2−1 − (α2 + 2)γr,nα2

)
,

γr,nα2
=

1

(α2 + 3)

(
(n+ r + 5)(n− r)

n
γr,n−1
α2

− (n+ 2− α2)γr,nα2

)
.

Thus using lemma 7.1 repeatedly, we have

(n+ 3− α2)γr,n+1
α2

+ (α2 + 3)γr,n+1
α2+1

=
1

n+ 1

(
(n+ 3− α2)

(
α2γ

r,n
α2−1 + (n+ 1− α2)γr,nα2

)
+ (α2 + 3)

(
(α2 + 1)γr,nα2

+ (n− α2)γr,nα2+1

))
=

1

n+ 1

(
α2

((n+ r + 5)(n− r)
n

γr,n−1
α2−1 − (α2 + 2)γr,nα2

)
+ (n+ 3− α2)(n+ 1− α2)γr,nα2

+ (α2 + 3)(α2 + 1)γr,nα2
+ (n− α2)

((n+ r + 5)(n− r)
n

γr,n−1
α2

− (n+ 2− α2)γr,nα2

))
=

1

n+ 1

(
(n+ r + 5)(n− r)

(α2

n
γr,n−1
α2−1 +

n− α2

n
γr,n−1
α2

)
+ γr,nα2

(2n+ 6)

)
=

1

n+ 1

(
(n+ r + 5)(n− r)γr,nα2

+ γr,nα2
(2n+ 6)

)
=

(n+ r + 6)(n+ 1− r)
n+ 1

γr,nα2
,

which completes the proof.

Lemma 7.4. The following identity hold for |β| = m− 1

Tmβ+e3 = −
(
β1 + 3

β3 + 3
Tmβ+e1 +

β2 + 3

β3 + 3
Tmβ+e2

)
.

Proof. By definition of Tmβ for |β| = m− 1 and applying lemma 7.3, it follows

Tmβ+e3 =

m∑
r=0

Smramrβ+e3

= −
m∑
r=0

Smr
(
β1 + 3

β3 + 3
amrβ+e1 +

β2 + 3

β3 + 3
amrβ+e2

)

= −

β1 + 3

β3 + 3

m∑
r=0

Smramrβ+e1 +
β2 + 3

β3 + 3

m∑
r=0

Smramrβ+e2

 .

59

[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical func-

tions with formulas, graphs, and mathematical tables, volume 55 of National

Bureau of Standards Applied Mathematics Series. For sale by the Super-

intendent of Documents, U.S. Government Printing Office, Washington,

D.C., 1964.

[2] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. Bernstein-Bézier

finite elements of arbitrary order and optimal assembly procedures. SIAM

J. Sci. Comput., 33(6):3087–3109, 2011.

[3] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. A Bernstein-

Bézier basis for arbitrary order Raviart-Thomas finite elements. Constr.

Approx., 41(1):1–22, 2015.

[4] Mark Ainsworth and Joe Coyle. Conditioning of hierarchic p-version

Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra.

SIAM J. Numer. Anal., 41(2):731–750, 2003.

[5] Mark Ainsworth and Shuai Jiang. Preconditioning the Mass Matrix for

High Order Finite Element Approximation on Triangles. SIAM J. Numer.

Anal., 57(1):355–377, 2019.

[6] Thomas Apel. Anisotropic finite elements: local estimates and applications.

Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1999.

[7] Ivo Babuška and Anthony Miller. The post-processing approach in the

finite element method— Part 1: calculation of displacements, stresses and

other higher derivatives of the displacements. International Journal for

numerical methods in engineering, 20(6):1085–1109, 1984.

[8] I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems

with piecewise analytic data. I. Boundary value problems for linear elliptic

equation of second order. SIAM J. Math. Anal., 19(1):172–203, 1988.

60

[9] A Barone, F Esposito, CJ Magee, and AC Scott. Theory and applications

of the sine-Gordon equation. La Rivista del Nuovo Cimento (1971-1977),

1(2):227–267, 1971.

[10] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of

preconditioners for elliptic problems by substructuring. I. Math. Comp.,

47(175):103–134, 1986.

[11] A. G. Bratsos. The solution of the two-dimensional sine-Gordon equation

using the method of lines. J. Comput. Appl. Math., 206(1):251–277, 2007.

[12] Elaine Cohen and Larry L. Schumaker. Rates of convergence of control

polygons. Comput. Aided Geom. Design, 2(1-3):229–235, 1985. Surfaces in

CAGD ’84 (Oberwolfach, 1984).

[13] Wolfgang Dahmen. Subdivision algorithms converge quadratically. J. Com-

put. Appl. Math., 16(2):145–158, 1986.

[14] Leszek Demkowicz. Computing with hp-adaptive finite elements. Vol. 1.

Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series.

Chapman & Hall/CRC, Boca Raton, FL, 2007. One and two dimensional

elliptic and Maxwell problems, With 1 CD-ROM (UNIX).

[15] Z. Ditzian. Multivariate Bernstein and Markov inequalities. J. Approx.

Theory, 70(3):273–283, 1992.

[16] P. G. Drazin and R. S. Johnson. Solitons: an introduction. Cambridge

Texts in Applied Mathematics. Cambridge University Press, Cambridge,

1989.

[17] Moshe Dubiner. Spectral methods on triangles and other domains. J. Sci.

Comput., 6(4):345–390, 1991.

[18] Gerald E. Farin. Curves and Surfaces for CAGD: A Practical Guide.,

volume 5th ed of The Morgan Kaufmann Series in Computer Graphics and

Geometric Modeling. Morgan Kaufmann, 2002.

61

[19] R. T. Farouki and V. T. Rajan. Algorithms for polynomials in Bernstein

form. Comput. Aided Geom. Design, 5(1):1–26, 1988.

[20] Rida T. Farouki. The Bernstein polynomial basis: a centennial retrospec-

tive. Comput. Aided Geom. Design, 29(6):379–419, 2012.

[21] Jean Gallier. Curves and Surfaces in Geometric Modeling: Theory and

Algorithms. Morgan Kaufmann, 2000.

[22] Ron Goldman. Pyramid algorithms: A dynamic programming approach to

curves and surfaces for geometric modeling. Elsevier, 2002.

[23] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3.

JHU Press, 2012.

[24] A. E. Green and W. Zerna. Theoretical elasticity. Dover Publications, Inc.,

New York, second edition, 1992.

[25] Ernst Hairer. Solving Ordinary Differential Equations I: Nonstiff Problems.

Springer, 2011.

[26] Yannis Haralambous. Parametrization of postscript fonts through meta-

font: an alternative to adobe multiple master fonts. Electronic Publishing,

6(3):145–157, 1993.

[27] Shi-Min Hu. Conversion between triangular and rectangular Bézier patches.

Comput. Aided Geom. Design, 18(7):667–671, 2001. Special issue Pierre

Bézier.

[28] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element meth-

ods for computational fluid dynamics. Numerical Mathematics and Sci-

entific Computation. Oxford University Press, New York, second edition,

2005.

[29] Boris N. Khoromskij and Gabriel Wittum. Numerical solution of elliptic

differential equations by reduction to the interface, volume 36 of Lecture

62

Notes in Computational Science and Engineering. Springer-Verlag, Berlin,

2004.

[30] Robert C. Kirby. Fast inversion of the simplicial Bernstein mass matrix.

Numer. Math., 135(1):73–95, 2017.

[31] Tom Lyche and Karl Scherer. On the p-norm condition number of the mul-

tivariate triangular Bernstein basis. J. Comput. Appl. Math., 119(1-2):259–

273, 2000. Dedicated to Professor Larry L. Schumaker on the occasion of

his 60th birthday.

[32] Jean-François Maitre and Olivier Pourquier. Conditionnements et

préconditionnements diagonaux pour la p-version des méthodes d’éléments

finis pour des problèmes elliptiques du second ordre. C. R. Acad. Sci. Paris

Sér. I Math., 318(6):583–586, 1994.

[33] Jan Mandel and G. Scott Lett. Domain decomposition preconditioning

for p-version finite elements with high aspect ratios. Appl. Numer. Math.,

8(4-5):411–425, 1991.

[34] Jens M. Melenk. hp-finite element methods for singular perturbations, vol-

ume 1796 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.

[35] Elwood T. Olsen and Jim Douglas, Jr. Bounds on spectral condition num-

bers of matrices arising in the p-version of the finite element method. Nu-

mer. Math., 69(3):333–352, 1995.

[36] Steven A. Orszag. Spectral methods for problems in complex geometries.

J. Comput. Phys., 37(1):70–92, 1980.

[37] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-

spline techniques. Mathematics and Visualization. Springer-Verlag, Berlin,

2002.

[38] Jean-François Remacle, Nicolas Chevaugeon, Émilie Marchandise, and

Christophe Geuzaine. Efficient visualization of high-order finite elements.

Internat. J. Numer. Methods Engrg., 69(4):750–771, 2007.

63

[39] MP Rossow and IN Katz. Hierarchal finite elements and precomputed

arrays. International Journal for Numerical Methods in Engineering,

12(6):977–999, 1978.

[40] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems

in pattern formation. J. Math. Biol., 34(2):148–176, 1995.

[41] Ch. Schwab. p- and hp-finite element methods. Numerical Mathematics

and Scientific Computation. The Clarendon Press, Oxford University Press,

New York, 1998. Theory and applications in solid and fluid mechanics.

[42] Christoph Schwab and Manil Suri. The p and hp versions of the fi-

nite element method for problems with boundary layers. Math. Comp.,

65(216):1403–1429, 1996.

[43] Spencer J. Sherwin and George Em. Karniadakis. A new triangular and

tetrahedral basis for high-order (hp) finite element methods. Internat. J.

Numer. Methods Engrg., 38(22):3775–3802, 1995.

[44] Dave Shreiner. OpenGL reference manual: The official reference document

to OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc.,

1999.

[45] Barna Szabó and Ivo Babuška. Finite element analysis. A Wiley-

Interscience Publication. John Wiley & Sons, Inc., New York, 1991.

[46] Andrea Toselli and Xavier Vasseur. A numerical study on Neumann-

Neumann and FETI methods for hp approximations on geometrically re-

fined boundary layer meshes in two dimensions. Comput. Methods Appl.

Mech. Engrg., 192(41-42):4551–4579, 2003.

[47] Andrea Toselli and Olof Widlund. Domain decomposition methods—

algorithms and theory, volume 34 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, 2005.

64

[48] Miki Wadati, Heiji Sanuki, and Kimiaki Konno. Relationships among in-

verse method, Bäcklund transformation and an infinite number of conser-

vation laws. Progr. Theoret. Phys., 53:419–436, 1975.

[49] Edward L Wilson. The static condensation algorithm. International Jour-

nal for Numerical Methods in Engineering, 8(1):198–203, 1974.

[50] Lanlan Yan, Xuli Han, and Jiongfeng Liang. Conversion between triangular

Bézier patches and rectangular Bézier patches. Applied Mathematics and

Computation, 232:469–478, 2014.

65

