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PRECONDITIONING THE MASS MATRIX FOR HIGH ORDER
FINITE ELEMENT APPROXIMATION ON TETRAHEDRA*

MARK AINSWORTH! AND SHUAI JIANGT

Abstract. A preconditioner for the mass matrix arising from high order finite element discreti-
sation on tetrahedra is presented and shown to give a condition number that is independent of both
the mesh size and the polynomial order of the elements. The preconditioner is described in terms of a
new, high-order basis which has the usual property whereby individual functions are associated with
distinct geometric entities of the tetrahedron. It is shown that the basis enjoys the property that
the resulting mass matriz is spectrally equivalent to its own diagonal with constants independent of
h and p. Although the exposition is based on an explicit basis, the preconditioner can be applied
to any choice of basis. In particular, the basis can be used to specify a basis independent Additive
Schwarz Method (ASM), meaning that, in order to apply the preconditioner to an alternative basis,
one only need implement an appropriate change of basis.

Key words. preconditioning mass matrix, polynomial extension theorem, high order finite
element
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1. Introduction. In the p-version of the finite element method (p-FEM), one
can obtain exponential rates of convergence [9,31,33], but the mass and stiffness
matrices are generally poorly conditioned. The mass matrix for standard hierarchical
bases have condition numbers that can grow as O(p'?) [2,16,21,24] while other bases
such as Bernstein or Peano can exhibit even worse growth [20]. Large condition
numbers can cause round off errors or mean that the cost of solving the linear systems
unreasonably dominates, each of which potentially neutralizes the advantages of high
order methods.

Effective preconditioners for the 3D stiffness matrix have been developed using
domain decomposition [8,36] methods. Depending on the sophistication and cost of
the algorithm, condition numbers of the preconditioned stiffness matrix range from
uniform to logarithmic growth in p [15,22,26,30]. In contrast, until recently, there has
been a dearth of preconditioners for the mass matrix on simplicial elements, with the
exception of [4] which addressed the triangle case. In the present work, we develop a
non-overlapping domain decomposition preconditioner for the mass matrix on tetra-
hedra which gives condition numbers independent of h and p. The preconditioner
means that, e.g. in explicit time-stepping, one can increase p without fretting over
the convergence of conjugate gradient.

Preconditioners for the mass matrix M for high-order C°-conforming finite el-
ement methods have applications beyond just explicit and implicit time-stepping
schemes. For instance, in the class of stationary equations, the singularly perturbed
problem [6, 14], which arises in plate, beam and shell theories, gives rise to linear
systems of the form M +&2S where S is the stiffness matrix and 0 < ¢ < 1. Similarly
to the 2D case [5], our mass matrix preconditioner can be applied to the singularly
perturbed system to give a condition number independent of the parameter € on the
optimal, single layer, anisotropic hp meshes which are advocated in [32] and shown
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2 M. AINSWORTH, AND S. JIANG

to give robust exponential convergence in €. By way of contrast, existing precondi-
tioners [34] for anisotropic elements rely on a geometrically-graded mesh or tensor
product elements in order to be robust in €.

The preconditioner is described in terms of a new, high-order basis which has the
usual property whereby individual functions are associated with distinct geometric
entities of the tetrahedron. However, our basis enjoys the property that the resulting
mass matriz is spectrally equivalent to its own diagonal with constants independent
of h and p. Although the exposition is based on an explicit basis, the preconditioner
can be applied to any choice of basis. In particular, the basis can be used to specify a
basis-independent Additive Schwarz Method (ASM), meaning that, in order to apply
the preconditioner to an alternative basis, one only needs to implement an appropriate
change-of-basis.

In principle, the construction of an Additive Schwarz preconditioner for the mass
matrix on tetrahedra should mirror the case for triangles [4]. In practice, however,
one encounters a slew of difficulties associated with the stable decomposition of the
face spaces which are not present in the the 2D case. In fact, even the choice of edge
spaces and inner products turns out to be different from the 2D case owing to the
need to decide how to extend the definition of the edge functions onto adjacent faces:
in 2D one can rely on static condensation, but in 3D one is working with discrete
trace norms defined implicitly by the Schur complement with respect to the interior
functions in 3D. The net result is that the tetrahedral preconditioner is quite different
from the case of the triangle. That said, our preconditioner for tetrahedra can be
specialized to triangles to obtain a different preconditioner than the one developed
in [4] which is simpler than the preconditioner in [4] and, in addition, gives a condition
number roughly half the size.

The remainder of the paper is organized as follows. In section 2, we define the basis
functions and state the main result. In section 3, we present illustrative numerical
examples such as singularly perturbed problem and time-stepping. Finally in section
4, we prove the inequalities and polynomial extension lemmas needed for the main
result.

2. Basis Definition and Main Result. Let T be the reference tetrahedron
in R3 with vertices v; = (=1,-1,-1),v2 = (1,-1,-1),v3 = (=1,1,-1), v4 =
(=1,—1,1), and let F; and E; be the face and edge given by

F=Tn{z=-1},

E,=Tn{z=-1}n{y=—-1}.
Let p > 1 be a given integer, and let P, (D) be the space of polynomials of total degree
pon a domain D. Let X :=P,(T), and A\; € P1(T) for i = 1,2, 3,4 be the barycentric
coordinates of T associated with vertex v;; i.e. A\i(v;) = di;.

We begin by introducing a particular basis for P, (") which, as usual, consists of
functions associated with vertices, edges, faces and the interior of the tetrahedron.
However, the actual choice of functions differs from those typically used in the liter-
ature.

2.1. Basis functions. The classical Jacobi polynomials [1] on [—1,1] are de-

noted by P,S“’B ), where n is the order of the polynomial and «a, > —1 are weights,
and satisfy

/_11 (1 ; x)a (142_‘%)6 PaP (@) do = n!(a +2ﬁ(i—’2—nn?|-!(lﬁ)(—;7?:!,3 +n)!’
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PRECONDITIONING THE MASS MATRIX 3

For non-negative integers m, g, let q)flm)(z) € Py([-1,1]) be defined by

m o (_1)q m,1
(2.1) () (z) := mp; )(z),

and Z, € P,([0,1]?) be given by

21
2.2 2. (1, 1p) = P22 [ 22 1) (1, +1,)7
( ) q( 1 2) q l1+12 (1+ 2)

Interior Basis Functions. For p > 4, let

; 2\ ino
Wik = MAAsMEi(Ar, Ag) P (1_‘;4 - 1) (1= Ay)? PPT2H82) 95, — 1)

for 0 < 4,j,k,i 4+ j+k < p—4. Note that w;;; vanishes on the boundary of T due
to the factor A AaAgAs. The set {w;;i} is an orthogonal basis for X; := X N HY(T)
with respect to the L?(T') inner product (see Lemma 4.1).

Face Basis Functions. For p > 3, the basis functions associated with the face
Fy are given by

Y = MM Ei (A, o) PO (1%‘1 - 1) (1) @252 20, — 1)
— A
for 0 <i,7,i4j < p— 3. In particular, the presence of the factor A; Ao A3 means that
these functions vanish on the remaining three faces. The basis functions on the other
three faces Fj, are defined in an analogous fashion to give the face spaces Xp, =
span{wg-c)}. The functions provide an orthogonal basis for Xp, (e.g. (’(/Jg-c), 5,’:%) x

8;j,mn Where (-,-) is the L? inner-product over T'); see Lemma 4.1.

Edge Basis Functions. For p > 2, the basis functions associated with the edge
FE; are chosen as follows:

qi( A3, A1) + (Mg, A3)
2 b

Xz(-l) = M A2Ei( A1, A2) 0<i<p—2,

where the function g; is given by

214

& (2i45)
2. (1) == ¢
(2.3) qi(l1,12) j (1 —

— 1) (1— lg)j @(2i+2j+6)(212 —1)

p—2—i—j

with j = [(p — ¢ — 2)/2]. The basis functions on the remaining edges E}, are defined
analogously to give the edge spaces X, := span{xz(-k)}.
The edge basis functions have the following properties:
1. locally supported: vanish on the two faces which do not contain edge E;
(owing to the factor A1 A2);
2. symmetry: the values on the two non-zero faces satisfy the condition that
x(r, s,t,0) = x(r,s,0,t) for all r, s,t;

3. orthogonality: (ng), ng)) x 0;; (see Lemma 4.1).
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4 M. AINSWORTH, AND S. JIANG

Vertex Basis Functions. The function associated with the vertex vy is given
by

1
1= g)\l (a(X2, Az, Ad) 4+ q(Az, Aas A2) + q(Aa, Az, A3))

where
— &2 20 i ~(2i43) [ 22
(24) q(l17l2? l3) 7 <1 . 12 . lg ) ( l2 lg) J (1 _ l3
x (1 —13)" @124 (215 — 1),

with 4 = [2] and j = [£]. The basis functions on the remaining vertices are defined
in an analogous manner to give the vertex spaces Xy, = span{py}.
The vertex basis functions have the following properties:
1. local support: ¢1(v1) =1 and vanishes at the remaining vertices;
2. symmetry: the values on the three non-zero faces satisfy the condition that
p1(r,8,0,0) = ¢1(r,0,5,0) = p1(r,0,0, s) for all 7, s.

It is not difficult to see that the basis functions are linearly independent and a
simple counting argument shows that the union of the sets gives a basis for X.

Basis Functions on a Mesh. Let 2 be a bounded three-dimensional domain,
and let P be a partitioning of 2 into the union of disjoint tetrahedra such that the
intersection of any two distinct elements is either a single common vertex, edge or face.
Each element K € P is the image of the reference element T' under a (possibly non-
affine) map Fk such that there exists positive constants 6, © such that the Jacobian
D F satisfies

(2.5) O|K| < |[DFk(x)| <O|K| VreK.

It is worth noting that this condition does not place constraints on the shape regularity
of the mesh, and, in particular, allows for “needle” or “slab” elements.

The basis functions on an element K € P are defined to be pull-backs using the
map Fx in the usual manner, e.g.

e1.x(2) = o1 (Fg'(z)), z€K.

The fact that the basis functions are associated with vertices, edges and faces, together
with the symmetry properties means that enforcing global conformity follows the
same procedure for hierarchic bases. In particular, one needs to number the degrees
of freedom in a systematic manner to ensure that the edge and face basis functions
will be oriented correctly. The standard finite element sub-assembly gives the global
mass matrix

M= > AxMgA}
KeP

where A g is the local assembly matrix and M is the element mass matrix expressed
using the above basis. For more details about the assembly process, see [3].

This manuscript is for review purposes only.
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PRECONDITIONING THE MASS MATRIX 5

2.2. Main result. The main result states that the diagonal of the mass matrix
is spectrally equivalent to the full matrix:

THEOREM 2.1. Suppose that the basis is chosen as in subsection 2.1. Then, there
exists constants 7, Y independent of h,p such that

7diag(M) <M < T diag(M).

Proof. Let M be the mass matrix on the reference element 7', then (2.5) implies
that

(2.6) 0| K|M < Mg < O|K|M.

We shall show below that the following condition holds with constants ¢, C' inde-
pendent of p:

(2.7) cdiag(M) < M < C diag(M).
Then, sub-assembly together with (2.6) and (2.7) shows that

cdiag(M) = ¢ 3 Agdiag (Mg) AR <¢ > |K|Agdiag (M) AT
KeP KeP

2.8) < Y IKIARMAYL < C Y |K|Agdiag (M) AL
KeP KeP
<C Y Agdiag(Mg) A = C diag(M)
KeP

where we dropped the dependence on 6, ©.
It remains to show that condition (2.7) holds: that is, there exists constants ¢, C
independent of p such that

ci’ diag(M)@ < @' Ma < Cal diag(M)d, — Vi.

The result is trivial for p = 1,2 and 3 by equivalence of norms on the spaces Py, Ps
and Ps. It suffices to consider the case p > 4.

Let u € X be the function corresponding to @ so that @ M = ||u/|* where ||-|| is
the standard L? norm over T. The vector @ can be decomposed as follows:

— e - - - - -
u = [ufqu17"'7uF47uE17"'7uEsauV1a'"auV4]

where @ corresponds to the coefficients of the interior basis functions wj;, or, equally
well, a function u; € X etc. This partitioning induces a partitioning of the mass
matrix into subblocks. Moreover, the orthogonality of the basis functions within each
block (but not necessarily between different blocks) means that

M;

Mpr

1

diag(M) =

My,

4

Thus,

2

4 6 4
" diag(V)a@ =lur|® + 3 lur * + 3 s, + 3 lluv,
=1 =1 =1

This manuscript is for review purposes only.



202
203
204

216

228
229
230
231

6 M. AINSWORTH, AND S. JIANG

where u; € Xy, up, € Xp,, ug, € Xg, and uy, € Xy;.
Condition (2.7) hence reduces to showing that for all u € X, there exist positive
constants ¢, C' independent of p such that

4 6 4
2 2 2 2 2
el + Ml + Y llus )+ lluvl® | <llull® <
=1 =1 =1
(2.9)

4 6 4

2 2 2 2

C {llurl® + Y llur * + Y lluml* + Y luv|
i=1 i=1 i=1

The upper-bound follows at once thanks to the triangle inequality. The proof of
the lower bounds is less straight forward and relies on a number of technical estimates
whose proofs are postponed to section 4.

Lemma 4.4 and the fact that |lul| < Cp3|ul| [38] gives the following bound on
the vertex components:

luv | =[lu(i)el| <llgillllulle < Cllull, — i=1,....4.

Now, by Lemma 4.5, we obtain

4
llug,|| < C U_ZUVi < Clull, i=1,...6.

i=1

We next apply Corollary 4.7 to each individual face to obtain

4 6
lug, || < C U_ZUVL_ZU& < C|lu|, i=1,2,3,4.
i=1

i=1

Finally, a bound for u; is an easy consequence of the triangle inequality

4 6 4
furll < Cllu=> uy, =Y up, =Y up,| < Clul. 0
=1 i=1 =1

Collecting these estimates establishes the lower bound in (2.9).

3. Numerical Examples.

3.1. Preconditioned mass matrix. We first illustrate Theorem 2.1 for a single
element. The left side of Figure 1 shows the condition number of the preconditioned
mass matrix on the reference tetrahedron. As predicted by Theorem 2.1, the condition
numbers remain bounded as p is increased.

To illustrate the h independence of the preconditioned system, we consider the
two meshes illustrated in Figure 2. The right side of Figure 1 shows the condition
number of

M, := P~ 1/2MPpP~1/2

where M is the global mass matrix on the cube and P = diag(M) on these meshes.
It is observed that the condition numbers on the refined meshes track the condition
numbers obtained on a single tetrahedron as suggested by (2.8).

This manuscript is for review purposes only.
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FiG. 1. Figure illustrates the condition number of the preconditioned mass matriz on a meshes
of siz elements, 24 elements and on a mesh consisting of a single element. The bounded condition
number of the preconditioned system is in agreement with Theorem 2.1.

Fia. 2. Figure illustrating the two meshes on the cube. The mesh on the left contains siz
elements and the mesh on the right contains 24 elements.

3.2. Singularly Perturbed Problem. The utility of the preconditioner is not
confined to the pure mass matrix. Consider the following problem

2
u—e‘Au=f, x €,
(3.1) /
u =0, x € 09,
where 0 < ¢ < 1 and f € L?(Q) which is prototypical of several class of problem
arising in mechanics [6,14]. The p-version Galerkin discretization of (3.1) leads to an
algebraic problem of the form

(3.2) (M +&28)i = f

where S is the stiffness matrix and f is the load vector corresponding to f.
Solutions to (3.1) generally exhibit boundary layers which become sharper as
e — 0; see Figure 3 for a plot of the solution for f = 1. If the order of the finite
element method p is large enough so that O(pe) > 1, then one obtains exponential
convergence in p on a quasi-uniform mesh [23]. If e < 1, then it is unrealistic to choose
the degree p = O(¢71) > 1. Instead, a single layer of anisotropic elements of width
O(pe) around the boundary suffices [23] to give robust exponential convergence in p
independent of €. Whilst this restores the accuracy of the resulting approximations,
an undesirable side-effect of the anisotropic elements is that the condition number of

This manuscript is for review purposes only.
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u
1.101e+00

FIG. 3. Cross-section of the solution to (3.1) for €2 = 10=% and p = 10 on a corner of the cube
showing the presence of a boundary layer.

Fi1c. 4. Figure illustrating the mesh used to approximate the singularly perturbed problem on
an octant of the cube. The inset shows the submesh of elements in the corner. Note the needle and
slab elements of width O(pe) encompassing the boundary of the cube.

(3.2) grows rapidly as € — 0. This means that the system (3.2) becomes increasingly
difficult to solve unless a preconditioner is used. Toselli and Vasseur [34,35] developed
a domain decomposition preconditioner for tensor product elements which results in
a condition number independent of ¢ and growing as 1 + log? p. Unfortunately, the
analysis of Toselli and Vasseur relies strongly on a tensor product structure and only
holds on a geometrically graded mesh. In particular, it does not apply to the boundary
layer mesh of [23] described above nor to meshes of tetrahedra. There are effectively no
existing preconditioners which are robust in the aspect ratio € on simplices. However,
it turns out that using a mass matrix as a preconditioner gives a condition number
independent of ¢ with a O(p?) growth on the boundary layer mesh described above.
A similar idea was first explored in [5] in the two dimensional case. We shall need

This manuscript is for review purposes only.
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the following result:

LEMMA 3.1. Let K be a slab or needle tetrahedron with the smallest side length of
size pe < 1, then for all polynomials u € P, (K), there exists a constant C independent
of e,p such that

IVl < Ol
Proof. Consider the case of the slab tetrahedron first. Without loss of general-
ity, let K be the slab tetrahedron defined by the vertices (0,0,0), (pe,0,0), (0,1,0),
(0,0,1) and let K be the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (0,0, 1).
Given u € P,(K), let @(Z,7,2) = u(pe, §, 2) be the polynomial defined on K,
then by a change of variables

HVU||§<:/K|Vu|2dxdydz

_ /K (pi)Q(a,;a(@,g,é))Q + (0y8(2, 9, 2))% + (9:0(2, , 2))pe dididz

1 ~
< 7/ |Val|® didjdz
pe Jk

C 3
< =25P / a2 didgds
e Ji

C 3 1 2
- S—p/ w? ~dudydz = Cs2 [lull%
e Jx pe €

where we used the standard Schmidt’s inequality ||Vu||§< < Cgp* ||u||§< on the reference
element K [10,25].

The proof for the needle element follows similarly by using the transformation
(&, 9, 2) = u(pet, pey, 2). d

The above lemma in conjunction with Theorem 2.1 gives rise to the following bound
»?

(3.3) cdiag(M) < M +&°S < [ 14 Ce*=; | M < Cp°diag(M)
€

on a mesh where a layer of slab and needle elements of width pe are placed along
the boundary; see Figure 4 for an figure of the mesh used on an octant of the cube.
Equation (3.3) shows that using the mass matrix preconditioner to precondition the
system (3.2) results in a condition number that grows as O(p?) but, crucially, remains
independent of €, even on an unstructured mesh.

To illustrate the overall effectiveness of the approach of using the boundary layer
mesh from [23] alongside the mass matrix preconditioner, we consider problem (3.1)
with f =1 and Q = (=100, 100)3. Due to symmetry of the problem, it suffices to only
consider the octant of the cube given by (0,100)% which we illustrated in Figure 4.
The condition number of the preconditioned matrices

diag(M)~1/2 (M + EQS) diag(M)~1/2

is reported in Table 1 where it is seen that the condition number is indeed bounded
independent of €.

This manuscript is for review purposes only.
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TABLE 1
Condition number of the singularly perturbed matrices obtained using the preconditioner for the
pure mass matriz. Observe the condition number exhibits moderate growth in p but remains bounded
independent of €.

€ p=4 p=5 p=6 p=7 p=8 p=9
le-1 | 16.99 19.76 28.56 33.88 59.27 83.03
le-3 | 22.61 21.17 30.65 30.02 39.20 39.04
le-b | 23.24 22.09 32.75 31.41 42.32 40.15
le-7 | 23.31 2225 33.08 31.67 42.78 40.38
le-9 | 23.31 2227 33.11 31.70 42.83 40.41

3.3. Time-Stepping. Finally, we discuss the application of the preconditioner
to time-stepping problems. Let

A(p,v) = pM + vALS.

For a fully explicit scheme v = 0, and Theorem 2.1 implies that the preconditioner
will be uniform in the polynomial order p. For a implicit scheme v > 0, we once again
take advantage of Schmidt’s inequality, which states that there exists a constant Cg

independent of h,p such that S < Cg Z—EM, to deduce that

4 4
M < A(p,v) < (u+ Cs%UAt)M < 2max (,u7 CS};QUAt> M.

In other words, preconditioning using the diagonal of the mass matrix gives

~ 27 VAt
(3.4) cond(A(p,v)) < - max (LCSthu >

where A(u,v) = diag(M)~Y2A(u, v)diag(M)~/2 and 7,7 are the constants from
Theorem 2.1; in practice one does not see the O(p*) growth owing to the small value
of the multiplicative factor CsvAt/p.

For a concrete example, consider a system of nonlinear reaction-diffusion equa-
tions [13] which exhibits pattern formation [27]:

du = —w? + a(l —u) + d,Au
(3.5) gt (z,y) € Q,t >0,
P~ w? - (a4 B)v+ d,Av
ot
where o = .05,8 = .02,d,, = 2 x 107°,d,, = 107® and Q a hemisphere with radius
1. Figure 7 illustrates the solution u at ¢ = 1500. It is commonplace in applications
for the diffusion coefficients to be significantly smaller in magnitude than the reac-
tion terms. For example, the Brusselator system arising in computational chemistry
considered in [17,37] or the Schnakenberg system arising in developmental biology
considered in [28,39] each have diffusion coefficients at least two orders of magnitude
smaller than the corresponding reaction factors.
Using a standard Galerkin approximation in the spatial dimensions and an IMEX

This manuscript is for review purposes only.
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PRECONDITIONING THE MASS MATRIX 11

scheme [28] for the temporal dimension, one arrives at the follow linear systems:

Mt — M

At
(3.6) M+ — Mi»

At

— 7 tal—amatt - e (su”+1 n Su”)
2

=" — (a+ M — % (Sv"“ + sw)

where 4", ¢ is the finite element approximation at time step n and g™ is the non-

linear moment associated with uv? at time step n. An IMEX scheme is chosen since

the diffusion operator is stiff and necessitates prohibitively small time steps were an

explicit method to be chosen.

The first equation of (3.6) involves inverting the matrix A (14 aAt,d,/2) at
each time step. Since p > v and numerical evidence suggests that the constant
Cs < 1 [25], the constant in front of the O(p*) growth in (3.4) is quite small. In
Figure 5, we show the condition number of A (1 + aAt,d,/ 2) with different At and
order p. In practice, one generally chooses At depending on p, but for illustrative
purposes here, we vary At and p independently. Note that the condition number for
p < 10 does not yet attain the asymptotic O(p*) growth even for artificially large
values of At. Results for the case At = 5 also exhibit a transition from constant
condition number to a slight growth with p as predicted by (3.4).

1022 [ ] [—e— At =1
- -—u— At=1
e At=5H
= —— At =10
@ 102 + J|—+— At=50
2 -o- At =100
g -=-At = 1000
§
o 1.5 |
o 10
| | | | | | |

Fic. 5. Figure illustrating the condition number of the preconditioned system arising from the
discretization of the reaction-diffusion system on the hemisphere consisting of 60 elements. Note
that we do not yet observe the O(p*) growth for p < 10 even for very large At.

The practical value of the preconditioner is illustrated in Table 2 where we display
the [min, median, max] iteration count resulting from using preconditioned conjugate
gradient (PCG) to perform time stepping for the Gray-Scott example to ¢ = 100 with
At = 1 for the v variable. The number of iterations is seen to remain bounded as
suggested by the condition numbers depicted in Figure 5. Figure 6 shows the residuals
of PCG at t = 0 for the v variable which are seen to decrease at a steady rate.

3.4. Application to the Nonsymmetric Systems. The mass matrix precon-
ditioner is also useful in cases where the linear system is not symmetric. For instance,

This manuscript is for review purposes only.
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12 M. AINSWORTH, AND S. JIANG

TABLE 2
~ Table displays the [min, median, max] iteration count of PCG applied to the system
A (1 + aAt, du/2) resulting from the IMEX scheme (3.6) for a period of 100 seconds with At =1
on 60 elements for the reaction diffusion equation on the half-hemisphere.

p | Preconditioned Iteration Count
1 [13, 14, 18]
6 [12, 13, 17]
8 [11, 11, 15]
10 [7, 10, 15]
B : : ]
5 ’+ Residual of PCG | |
1074 F E
, 10771 E
=3 & 1
% L i
g 1070 E
A~ = 1
1077 ¢ E
1078 F E
E | | | | :
0 5 10 15
Iterations

F1c. 6. Plot of the residuals resulting from the preconditioned conjugate gradient method applied
to the Gray-Scott example with p = 6 on the hemisphere at t = 0 for the v variable.

consider the linear advection equation

(3.7) azl/-V% (z,y) €t >0

subject to uw = 0 on 99, ¢ > 0 and u(z,0) = up(z) in Q, where v is a velocity field.
For simplicity, we consider a standard Galerkin approximation in space and backward
Euler in time. The resulting linear system is

(3.8) Bi" ! =Ma", B:=M+ AtC

where 4" is the finite element approximation at time n, C is the convective matrix
with entries C;; = (¢;,v - Vo;) and ¢;,@; are the basis functions. Observe that
M is SPD whilst C is skew-symmetric and thus has a purely imaginary spectrum.

Moreover, we have for any vector u

(3.9)
Csp?

C 2
_, - 2 Sp _, -
@ Cil < |(u,v - Vu)| <[] oo ]| [Vul| < Wl e ull” = == [Vl oo @ M

where Cg is the constant arising from Schmidt’s inequality. In particular, this means

that if At < C p%, then B ~ M which suggests using M as a preconditioner for B.
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Fic. 7. Plot of u from above in the Gray-Scott equations (3.5) with p = 6 (left) on a mesh of
the hemisphere with 1159 elements (right) at t = 1500 with At = 1.

The resulting preconditioned matrix

B:=M'?BM 2 =1+ AtM /2CM~1/?

has eigenvalues which lie on the segment S = [1 — A, 1 +4A] C C with A = C’At%.
If GMRES [29] is used to solve systems involving the matrix B, then, thanks to [12,
Corollary 2.8] and [29, Proposition 6.32], the residual at the k-th iteration is bounded
by

A A k—1
3.10 || < 7
(310 : k”—¢1+—A2<1+m> 7ol
where 7 is the initial residual. This estimate shows that if At is small, e.g. such
that A <1, then the quantity HAW < 1/2 and one obtains rapid convergence. In

practice, one chooses At ~ h/p so that A ~ O(p) meaning that GMRES will converge
at a rate which degenerates slowly with the order p.

The above discussion suggests using the preconditioner for the mass matrix as a
preconditioner for B, giving rise to the preconditioned operator

(3.11) B := diag(M)~/2Bdiag(M)~ /2 = Mg + AtCg

with Mg = diag(M)~'/2Mdiag(M)~'/? and Cg = diag(M)~/2Cdiag(M)~/2. The
estimate (3.9) along with Theorem 2.1 reveals that

CYp?
h
where T is the upper bound arising in Theorem 2.1. Consequently, using the fact

that p(A) =||AJ for A a normal matrix where p(-) is the spectral radius of a matrix,
we have

Csp?

ala

|iT Cgit) < ]| e @7 diag(M) Y/ ?Mdiag(M)~1/24 < i

|B]| <IMsi+ atiCs) = pMs) + Ato(Cs) < T(1+ At /h)
and )xmin(f’) + ET) > 27 where 7 is the lower bound arising in Theorem 2.1. Finally,
Elman [7,11] gives the following bound for the convergence of GMRES for the matrix
B,

- -k -
1751 < sin®(B) |70l
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14 M. AINSWORTH, AND S. JIANG

TABLE 3
Iteration count of using GMRES to solve the preconditioned system B and unpreconditioned
system B. Using the preconditioner greatly reduces the iteration count in all cases.

p | At=0.001 At=0.01 At =0.1
B B B B B B

4120 107 | 22 104 | 100 365

5128 28 |22 243 | 186 1438

625 85 |37 611 | 213 6699

7124 2380 | 41 1798 | 269 26573

8 131 4582 | 58 3060 | 286 99102

9127 15129 | 60 8154 | 457 > 99999
where cos(8) = /\min((|]|31;|FT)/2) > % 1+CA1tp2/h which, in view of the uniform lower
bound on %, shows that using the diagonal preconditioner will give results similar
to what one expects were the full mass matrix to be used as a preconditioner for B.

We display the number of iterations needed for GMRES to converge when solving the
matrices B and B with v = (1,1,1) on a cube with 132 elements in Table 3. Observe
that preconditioning with the diagonal of the mass matrix proves to be quite effective
in reducing iteration count in all cases, even when At is relatively large.

3.5. Applicability to Other Types of Basis. The discussion thus far might
leave the reader with the (false) impression that our preconditioner is only applicable
provided one uses the basis presented in subsection 2.1. This is not the case. The
preconditioner is applicable to any choice of basis. Indeed, our preconditioner can be
regarded as defining an abstract Additive Schwarz method (ASM) [8,36] as follows:

The ASM is defined by the following subspace decomposition

4

6 4
X=X a@PXr &P Xn &P X
k=1 k=1 k=1

in conjunction with an exact solver on each subspace. Specifically, given a residual
f € X, the action of the ASM is defined as follows:

e uy € Xy : (ur,vr) = (f,vr) Vor € Xy,

® up, € XFk : (quka) = (fvka) Vka € XFk?

® uUg, € XEk : (U‘Ek?ka> = (f7ka) Vka € XEk7

* uy, € Xy, : (qu7UVk) = (fvak) Yoy, € Xy,
and returns u = uy + Zid up, + 22:1 ug, + Zizl uy,. This formulation of the
preconditioner relies only on the choice of space, and not on the particular basis. The
proof that the ASM gives rise to an uniform bound on the condition number follows
from the fact that the constants ¢, C in (2.9) are independent of p [36, Theorem 2.7].

The action of the preconditioner for a general choice of basis consists of first

statically condensing out the interior degrees of freedom. Lemma 4.3 states that X
is L? orthogonal to the remaining subspaces:

4 6 4
X LEPXn o P X 0P xv,
k=1 k=1 k=1

which means that one can first reduce the system to the Schur complement matrix.
Once the Schur complement is in hand, a change of basis can be applied on the in-
terface to map to the spaces X, , Xg, and Xy, corresponding to the preconditioner

This manuscript is for review purposes only.
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cific details in the 2D setting can be found in [5]. The same ap-

proach extends readily to tetrahedral elements considered here; most of the numerical

examples of section

3 were computed using the Bernstein basis in conjunction with a

change of basis operator.

4. Technical Lemmas. In this section, we turn to the proof of the technical

lemmas which were

used in proving Theorem 2.1.

4.1. Orthogonality. The Duffy transformation [18, §3.2] given by

§=

T — N\

2, X a2
9 ”7 T 1 _ A4

~1,  f=2-1

maps the tetrahedron T onto the cube {(¢,7,0) : —1 < &,n,0 < 1}. For reference,
the edge F1 = {(£,1,0) : —1 <& <1,n=—1,0 = —1} and the face F} = {(£,n,0) :
We begin by establishing the orthogonality properties of the basis functions:

LEMMA 4.1. The functions {wi;}, {1/1(1?)}, {Xl(k)} provide an L?-orthogonal basis

for X1, Xp,, Xg, re

ij
spectively.

Proof. Tt suffices to show that

1 1) 1 @)
(whjlkl?wizjzkz) X 6i1j1’€17i2j2k2’ (¢i1j17wi2j2) X 6i1j17i2j2a (Xil ) Xig ) X 6i1,i2'

Transforming the basis functions using the Duffy transformation gives

Wijk =

n _
Vij =

1) _

3

1-81+ fP(2,2)(§) <1 — W)HQ 1+ " p(2i+5.2) )

2 2 ’ 2 2 J
1-0\""? 1490 2i42548,2
x (2 ) 5 BT ),

1-E81+4+¢& 22 1-n\"" 149 (2i+5,2)

Nt
x(l 9) (I)(21+2j+8)(9)7

2 p—3—i—j

1—E14€ 29y, (1—n\"2(1-0\"
— 5 L (5)( 5 ) 5 F(n,0)

where F'(n, ) is a polynomial in 7 and 6.
The Jacobian of the Duffy transformation is given by

1— _ 2
g lom(1=0)"
2 2

and, as a consequence, we find

/ Wiy j1k1Wizjoko dz
T

1 _ 2 2
-[L(5F) (5F) reonete
-1

1 i1+ia+5 2
1—n 1+n (2i1+5,2) (2i2+5,2)
L5 () A

2 2

1 i1+i2+j1+7J2+8 2
1—6 146 Iy "y
></ < (+> P]gf1+2j1+8,2)P153 2425248,2) 19
-1

= 05117i26j17j2 5k17k2 .
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16 M. AINSWORTH, AND S. JIANG

469 The result for the edge wg) and face XEU functions follows the same lines. O
470 The next lemma enumerates the pertinent properties of the function <I>,(3m) which
171 was used in several places in defining the basis functions:
472 LEMMA 4.2. For non-negative integers m, q, <I>1(,m) has the following properties:
473 1™ (—1) =1,
A74 2. Weighted norm
173 @1) I /1 <1_x>m(q><m>( ))2d 2
400 . m, = €T T = ,
176 ! —1\ 2 / (g+1)(m+q+1)
477 3. Orthogonality property
1 m

1-— 1
478 / ( x) ﬂ@ém)(x)w(x) dx =0
479 1\ 2 2
480 for allw € P.([—1,1]) with r < q.
181 Proof. The first property comes from the fact that Pq(m’l)(—l) = (—l)q(qzl) 1,

482 §22.2.1], and the third property follows straight from the orthogonality property of
153 P{™Y. For the second result, relation (22.7.19) in [1] gives us

154 ZarmEl pmey - _4EM_ plmd) _ plmy),
485 g+m+1 1 g+m+1 97 !

486 Equation (4.1) in the case of ¢ = 0 trivially holds. Suppose that (4.1) holds in the
487 case of ¢ — 1, then

488 I — 1 /1 l-= mP(mvl) (Jj)P(m’l)(.T) dx
T g a2 ) ‘
1 m 2
1-— 2 1
150 _ 1 2/ ( $) (q+m+ )2 Pq(m’o)(x)Pq(m’O)(CC) dx
(q+1)2 )1\ 2 (g+m+1)
1 (q+m)*
490 + VA
(q+1)2(q+m+1)2? imat
o1 1 (2g+m+1)? 2 N 1 (g+m)? 5 2
’ g+ 1?2 (g+Fm+12 2¢+m+1 0 (¢+1)2 (q+m+1)2q qg(m+q)
2
492 = |
493 (g+1)(g+m+1)

494 and the result (4.1) holds by induction.

495 The above result implies that the interior basis functions are orthogonal to the
496 face/edge/vertex functions:

497 LEMMA 4.3. Let Xp = @2:1 Xr, ® @2:1 X, ® @izl Xv,, then the space X
498 can be decomposed as X = X1 ® Xp such that X; L Xp.
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Proof. Recall Z;,¢; and ¢ from (2.2)—(2.4) respectively, and define )‘(El

(4.2)
)Zgl) = )\1)\251‘()\17 )\2)(]i()‘37 >‘4)

_ ﬂﬂpgz,z)(g) (1_,]) i+2 B2H5) (1) (1_9> i+j+2 .
2 J

2 2 v
@1 = A1q(A2, A3, A\a)

2

2 2

p—1—i—j

)

o i i+1 ) i i+j+1 ) )
_ 1 5@1(2)(5) <1 5 77> (I)§21+3)(n) <1 0) (I)(21+23+4)(0).

, 1 as

2i+2j+6
Z(,,;ﬁj)(e),

17

By permutation of the barycentric coordinates, it suffices to show that for any
interior basis function wy,, with 0 < I,m,n,l +m +n < p — 4, the inner product

vanishes

(@17wlmn) = 07
(Xl(‘l)»wlmn):(L iZO,...,p*Q,

W, wimn) =0, 0<iji+j<p-3.
Calculating the inner-product for the face functions first:

1 2 2
W) = [ (555) (55F) PePert @ ae

-1

-1

2 2 P8

-1

1 i+14+5 2
1—n 14+n i
X/ ( 2 ) ( 2 ) PRS2 () P02 () dn

L i+l4j+m+8
x/ (1_9) J (H—@) BRH2S) (g) prramt8.2) (g) g

1 /1 e 2042548 o
~ 6il6jm (1 . 9) (1 + 9) CD(21+2J-+8) (9)P£Ql+2m+s,2)(9) .
-1

2 p—3—i—j

The inner-product vanishes if ¢ # [, j # m. Assuming otherwise, then we have that
p—3—i—j>nasl+m+n<p—4, hence the inner-product is 0 by Lemma 4.2.

For the edges, we have

2 2

1 i+1+5
B 1-— 14+ i
(0, Wimn) o< / <n) ~ I pEHR () PRS2 (1) dy

-1

a2 g po2oind

1 it+j+l+m+T7
X / (1 — 0) ! L+ 0P(2i+2j+§71)(0)P7(L2l+2m+8,2) (9) do.

The inner product is trivially zero if i # [ or m < j. Assuming otherwise, we have for

the 0 variable

/1 1—0\*" 140
4\ 2 2

The above vanishes if

2

l+m—-j+n<p—-2-i—j
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18 M. AINSWORTH, AND S. JIANG

which follows from the fact that | +m +n <p —4.
Finally, we have

1 B 2
o) x [ (F55) SR ©R € de

1 i+1+4
L—n L4170 i3,
/ ( 2 ) 5 B ) PG () dn
-1

1 i+j++m+6
1-0 140 (oien; .
/1 ( . ) J2r PRI (g) pltH2mEs2) (g) 4o

If i > [, then there is nothing to prove, otherwise the 7 integral can be written as

i I—i
/1 (177>2+31+?7 <177)1+ P(21+5,2)( )

9 9 m n
-1

2
which vanishes if 7 > 1+ 1 — ¢ + m. Finally, assuming otherwise, the 6 integral can
be written as

P () dn

1 2i+2j+4 l+m—i—j4+2
1-0 1+6 1-6 m 2i+2j+4,1
/ (2 ) — (2 ) pRramEs2) (g) | pEIEITLY (g) g,
-1
The above quantity vanishes if
I+m—i—j+2+n<p—-1—i—j
which follows from the fact that [ +m +n < p —4. 0

Now we turn to the stability of the subspace decomposition.

4.2. Vertex Contributions. The following lemma corresponds to Lemma 5.4
and 6.1 of [4] and allows us to bound the vertex contribution:

LEMMA 4.4. The vertex basis functions of degree p satisfy the bound
ep™® <ol < Cp~°

for constants ¢, C' independent of p.

Proof. Note that

lerll =1|21/3 + Arg(As; Aas A2) /3 4+ Aig(Xa, Az, A3) /3|
<||@1/3|] +||A1a(Xs, Aas A2) /3| 4[| Ara(Aas Az, As) /3] =11 |

where ¢, is defined in (4.2).
Using Lemma 4.2,

1 1 2 1 1 2i43 ;
12|12 :/ ( 45) o dg/ ( . 77) 2+ g
—1 —1

2i+2754+4
X /1 (1_9> ! @(2i+2j+4) do

1 2 p—1l—i—j

= 8 <Cp*®
G+ +3)G+DCi+j+p—i-Ni+itp+rd =7
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For the lower bound, let 0 <i,j,k,i+ j + k < p and define

T=n\" (2 1—0\""7 _(9isa;
(4.3) Ui = CijkPi(O’O) (€) (277> P]@ +1,0) () (2) P,iQ +23+2,o)(9),

where ¢;j; = $1/(2i +1)(i + j + 1)(20 +2j + 2k + 3). These functions form an or-
thonormal basis for X hence ¢ can be written in the form ¢ = ZiJerrkSp Uik Vijk

where u;;, are the appropriate coefficients and loll? = Ditjk<p ufj x- It suffices to
prove the inequality in the case of ¢1. Cauchy-Schwarz gives

2
L=lp(-1, -1, -0 = [ Y (=) epuy
i+j+k<p
P+1)*p+2°(p+3)?, -2
< D Y = lel*. O

ij ijk — 48
i+j+k<p i+j+k<p

We now proceed to the edge contributions.
4.3. Edge contributions. The following lemma bounds the contribution on an
edge:

LEMMA 4.5. Let u € X be such that uw vanishes at the vertices of T. Let v be
an arbitrary edge of T and let U € Xg. such that Ul, = ul,. Then there erists a
constant C' independent of p such that

(4.4) IUN < Cllull-

Proof. Without loss of generality, we assume that v := Fy. Let U = ZZ -0 wlxgl)
where the coefficients w; are chosen such that U|, = u|,. It is more convenient to
work with the function X( ) defined in (4.2). Observe that )‘(gl)\El = X51)|E1a and

(! ),Xg ) o 6ij. Let U = 3P 2w;x'", then U = U on edge v and ||U|| <||U]| as

/2 + A A2Ei (A1, A2) g5 (Mg, As /2H

o )/QH A AE (A, A2)g; (A, As) /2| =

thus it suffices to show that ||U|| < C|lu.
To this end, recall the orthonormal basis U;;, defined in (4.3) and let u =

Dy jrhsp Wik Vigk and

(0,0)
fi=uly= Zvl

where

p—ip—i—j (_1)]+k
(4.5) vi=y > Tuijk\/(% +1)(i+7+1)(2i +2j + 2k + 3),
j=0 k=0

Furthermore, since u vanishes at the vertices of T', then f(£1) = 0 thus

p p
(46) Z V; = O7 Z V; = 0.
i=0,even i=1,odd
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505 Consequently, we can rewrite f = >0 , (Pi(o,o) — P(0 0)),9 where

v —vg — -+ — Vg if 7 even
599 Si=vi+viga+--+4 " = 0 2
600 Up—1 —UV1 — " —Vj—2 else
601 depending on the parity.
602 Turning to the coefficients w;, we must have on edge y
- 1-¢1 +
603 Uly = 5 § Z P(2 2) Z( i(o,o) - Pi(E’QO))Si
604 i=2

605 Recall the following identity from Lemma 6.6 of [4]

1—22 1 2 -1
g o= (DY) pesy nolpe2) L poo - poo) s
607 2(n—1) 2n 2
608  where P,,_4 is understood to be 0 for n < 4, then we have
i+ 1)(i+2)
506 P2 N (LEEDEE2) pea | peo)) g
I
610 =2
611 and we deduce by matching coefficients that
i+3)(i+4
w; = Si+4 - MSZH
‘ (G+1)(i+2)
612 (4.7) ,
; 2(5 + 21)
= —Vito — o Oit2
613 (i+1)(i+2)
614 With (4.7) in hand, we can now analyze |U| and |lu||l. The Cauchy-Schwarz
615 inequality applied to (4.5) gives
p—ip—i—j p—ip—i= J
o 20+ 1)+ 7+ 1)(20+ 25 + 2k + 3)
o 2SSy !
i=0 k=0 i=0 k=0
1 p—ip—i—j
617 = @D —p=2-p-D(i+p+2)(i+p+3) )Y > udy
618 J=0 k=0

619 hence, rearranging and summing over the index 4, we have a lower bound for ||ul|

i 160?
2+ 1(i-p-2)(i-p-1)(+p+2)(i+p+3)
620 (4.8) - » )
Ik
Y : < Jull.
—p— 2
621 = (1) D2(i+p+1)
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Using Lemma 4.2, the fact that j = |2=2=2], and Cauchy-Schwarz on (4.7) gives

2(i + 1) (i + 2)w? 2 2
(i +3)(i +4) (2@-1—5) G+1)2i4+j+6)(p—i—j—1)(i+j+p+5)

lo]° =

SM

w2 1 1
G+D(p—i+D)p+i+)(p—i+DGE+p+1)

Q

1=0
p—2 2 2
Vita Siie

SOl T+ ) i1 GE =i+ 1) i T 1)

M

=0
The first term is bounded easily by using (4.8)
2

i+2 P Uy
(i+1)(p*i++1)2(p+i+1) ; (i+1)(i—p—1)2>i+p+1)2 < Cfful

~. =
||M|
(=) [N

Hence, the theorem follows if there exists a constant C' independent of p such that

- 2 P 2
Z 151+2 . < CZ . . Vi : 7
—(i+1)P(p—i+1)?(p+i+1)? 7 (i+1)(i—p—1)2(+p+1)°

but this follows by applying Lemma 4.10 with j = 2. O

4.4. Face contributions. Finally, it remains to show that the face contributions
are bounded. Let F' be an arbitrary face of T, and let S be a subset of the remaining
faces of T. We remark that S U F' need not necessarily coincide with the set of all
faces of T. Let Y := {u € X : u = 0 on all the edges of F'}, and define the operator
5571:‘ : YF — YF by

(4.9) Es pu = aurgminHvH2
’L)‘F:ulp
v|s=0
veEYR

Existence to the minimization problem is trivial, while uniqueness comes from the
strict convexity of the squared L? norm. Clearly,

HES\F’,FUH <||€s.pu|, VF' CS

since £s pu = w on F and also vanishes on S\ F’'. The proof that the converse
inequality is also independent of p is less obvious:

LEMMA 4.6. Let F be an arbitrary face of T', and let S be a subset of the remaining
faces of T. There ezists a constant C independent of p such that

|Es,pul| < CH55\F/,FU )

Yu € Y,

forall F' C S.

Before giving the proof, we note the following consequence of Lemma 4.6 which was
used in the proof of Theorem 2.1:
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22 M. AINSWORTH, AND S. JIANG

COROLLARY 4.7. Let F; be any face of T and w € YF,, then there exists a poly-

IUN < Cllul
where C' is independent of p.
Proof. Choosing S =0T \ F;, F' = S, and let U = &g p,u. Clearly, U € Xp, as
U vanishes on S the three remaining faces. Furthermore, Lemma 4.6 gives the bound

101 =1&s mul < C|[symp| < Clul. 0

All that remains is to prove Lemma 4.6; to this end, for I,m,n € {0,1} define the
polynomials

(Immn) _ 17_5 " ﬂ " (2m,2n) 1_777 e H_J l
L (2)<2)Pi (5)(2) (2)

(4.10) )j+i+m+n+l

. cI)(2(j+z+m+n+l)+2) (0)

p—i—j—m—n—I

2i+2m+2n+1,21 1-0
x Pl )(7})<

with 0 <4,5,i+7<p—Il—m—n.
LEMMA 4.8. The following properties hold:
Lol e X,
2. C(l’l’l) vanishes on {£ = +1,n =1}, (Z(;)’l’l) vanishes on {£ = £1} ete.,
3. C(l - wl(;), our face basis functions,
4. {C(l . n)} is orthogonal on T for a fized I,m,n,
5. {g” |} spans Py(Fy) N HL(FY).

Proof. The first three statements can be deduced by inspection. For the orthog-
onality property, we note that

m,n m,n ! 1- am 1+ m m,2n m,2n
e [ (F5E) () pemeen e a
—1

2 2

i1+i2+2m~+2n+1 21
y 1 1— n i1+i2+2m+2n 1+ n P(2i1+2m+2n+1,2l)P§2i2+2m+2n+1,2l) d77
L\ 2 2 7 2

The quantity vanishes if i1 # i5 or j1 # ja.

The last statement follows from linear independence, and recognizing that the
restriction of the 3D Duffy transformation onto F} reduces to the 2D Duffy transfor-
mation. |

The following lemma gives an explicit expression for the operator £g r defined in
(4.9):

LEMMA 4.9. Let u € Yp, then
I,m,n) ~(I,m,n
(4.11) Espmu= > gl
i+j<p—l—-m—n

I,m,n)
ij

(4.12) S ulmmEm I e, 1) = ulen, 1)

i+ji<p—l—-m—-n

where u; are determined by the condition
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691 and the coefficients I, m,n are given by one of the following conditions depending on
692 S':

693 1. S={=-11u{E=1tu{n=-1}, m=n=10=1.
694 2. 8={{=-1}u{¢=1}, m=n=1,1=0.
695 3. 8={¢=-1}u{n=-1}, m=1,n=0,l=1.
696 4. S={=1}u{n=-1}, m=0,n=10=1.
697 5. S={{=-1}, m=1,n=1=0.
698 6. S={n=—-1}, m=n=0,0l=1.
699 7.8={=1}, m=0,n=1,1=0.
700 8. S=0, m=n=1=0.
1 Proof. Clearly, the coefficients ugmn) are uniquely defined by (4.12) thanks to

02 properties 4 and 5 of Lemma 4.8. For the sake of notation, we will drop the (I, m,n)
3 notation in the remainder of the proof. It suffices to show that the right hand side of
704 (4.11) solves the minimization problem (4.9).
5 By statement 4 of Lemma 4.8, and statement 2 of Lemma 4.2, we can calculate

(4.13)

Z uiiGij|| = Z “?jHCinz

706 i+j<p—l-m-n i+j<p—l—m—n

- ij ity o — - -
707 i+i<p—l-m-n p—i—j—m—-—n—Il+1l)(p+itjt+m+n+l+3)

708 where
1—z\"™ /1 +x n m.2n
709 i = / ( 5 ) ( 5 > (pi(2 ,2 ))2 dzx
1_ 2i4+2m+2n+1 1 21 i omtan
710 v; = / i ( + z) (P22 )2
711 2 2 !
712 We will show below that |’€S,F1UH2 equals the above quantity (4.13).
713 Fori+j+k<p—I1l—m—n,let

L 17_5 m ﬂ n (2m.2n) 1_777 i+m+n 1_1_777 l

, e
(2i+2m+2n+1,21) 1— @\ T
X P; (n)

. P£2(i+m+n+l+j)+2,0) ).

~
ot

716 By construction, ¥;;; vanish on .S and are orthogonal to each other, hence there exists
717 coefficients ;5 such that Eg pu = Zi+j+k§p_m_n_l Uik Wij, with

. 2 ~2
718 Hé‘s,pluH = Z Uy iV Pk
719 i+j+k<p—m-—n-—I
720  where
1 — g\ 2(Fmtntity)+2 o 90
721 PE = / (2) (Plg (i+m+n+l+j)+2, ))2 d.
722
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We now turn to the relationship between u;; and u;;;. First, note that ;;|m =
W,k hence in order to satisfy the constraint on Fi, we must have > u;;(ij|lr =
> Uik Wijk|F, and thus

p—i—j—m—n—I p—i—j—m—n—I
(4.14) w;; = Z ,EijkPé?(z+7rz+n+l+])+2,0)(71) _ Z (71)1@%%
k=0 k=0

By Cauchy-Schwarz inequality, we have that

p—i—j—m—n—I p—i—j—m—n—I
(4.15) U?j < Z E?jkpk Z i
k=0 k=0

which implies a lower bound for the norm of the extension in terms of u;;

2 ~2
HgS,Fluu = E UiV Pk
i+j+k<p—m-—n—lI
(416) p—m—n—I p—m—n—Il—1i ug
§ . § , ij
2 i Vj p—i—j—m—-n—l —1°
i=0 §j=0 Zk:o P

In fact, equality can be achieved in (4.15) if we let

B v 1 Wis
Uik = (-1 P ( P—i—j—g—n—lpq) .

k=0 k

One can verify that with this choice of coefficients that (4.14) is still satisfied. As
thus

_ 2
Pk = 304 l+mtn)+2k+3"

p—i—j—m—n—I
1
Y. A= g—i—i—lement Dttt mtntp+3).
k=0

Comparing (4.16) with (4.13), we see that they are indeed equal. d
Finally we are in a position to give the proof of Lemma 4.6:

Proof. We first prove the case where F’ consists of a single face. Without loss
of generality, we can assume that F = F; = {f = —1} the reference face, and
F' = {n = —1}. There are three cases corresponding to S\ F’ consisting of the empty
set, a single face or two faces:

Case 1. If S = F', we choose m =n = 0.

Case 2. If S\ F’ is a single face, we choose m =0,n=1orm=1,n=0.

Case 3. If S'\ F’ consists of the two remaining faces, we choose m =n = 1.
Let a, 8 € X be

ai= Y el g Y Gl

i+j<p—1—-m-—n i+ji<p—m—n

with coefficients «;;, 8;; such that o and 5 coincides with u on face Fy (i.e. u|p =
a(g,n,—1) = B(&,n, —1)). Lemma 4.9 implies that

a=Eg U, B = Es\r',p U,
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and it suffices to show that there exists a C' independent of p such that ||«| < C||8]|.
Using orthogonality of the basis functions and Lemma 4.2 gives

2(i + 2m)\(i + 271)!04%
Z il(2i +2m +2n + 1) (i + 2(m + n))!

) G+16+2)
(i+j+m+n+2)2i+j+2m+2n+3)(2i+j+2(m+n+1))
2
p—it—j—m-—-n)li+j+m+n+p+4)
2(i + 2m)!(i 4 2n)!ag;

~ W_@;ﬂnin A2+ 2m+ 20+ )i+ 2(m + n))!

(+1)2 1
(i+j+12(p—i—j)i+j+p)

2
™ =

i+j<p—1-m-n

(4.17) X

and
Z 2(i + 2m)!(i 4 2n)! 67
757 , '
o N2+ 2m+2n+1)(i + 2(m +n))!
X ! 2
i+j+m+n+lp—i—j—-m-n+1)(Gi+j+m+n+p+3)
. . 2
Z 2(i + 2m)!(i + 2n)!B;;
75 . '
i iN2i+2m+2n+ 1)@+ 2(m +n))!
1 1
i+j+l(p—i—j+1)(i+j+p)
We thus have to show for all 0 <7 < p—m —n — 1 that

[Ell

(4.18)

%

p—1— n—i

5.

TN+ D)% 1
7=0

(i+j+1)3(p—i—5)(+j+Dp)

p—m—n—i 512] 1

<C :
= ;0 i+j+1p—i—j+1(i+j+p)

(4.19)

Now, we turn to the relationship between the coefficients o;; and f;;. First, note
that since u € Yp,, it vanishes on the edges of Fi; in particular u|p, A{;,——13 = 0. We
have a|pnm=—13 = 0 as Ci(jl’m’n) vanishes on 7 = —1, but the basis functions of 8
does not vanishes trivially on n = —1. We see that

Blrn{n=—1} = Z <12£) (12+£> Pi(2m’2n)(§)(—1)jﬁij

i+j<p—m-n

p—m—n 1— m 1 n o om p—m—mn—1 )
> (59 (5%) 2o 5

i=0 j=0

hence by linear independence,

p—m—n—i
(4.20) (=1)78;5 = 0

Jj=0
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76 in order for B|p A{y=—1} to vanish.
77 Now returning to the face Fi, let v = 2¢ 4+ 2m + 2n + 1, then

p—1l—-m-n m n i+m4+n
o o 175 1+§ (2m,2n) 1777
778 O[|F1 = Z <2) <2) Pi (6) T

=0

n—1 1 + 7] 72
(2> Pj(’y )(77)0%]‘

p—1—

m
779 X E

780 Jj=0

781 By (4.20), Bp—m—n,0 = 0 hence

p—m—n m n i+m+4n p—m—n—i
; 1-¢ 1+¢ m.2n L—n ,
won= 3 (S58) (5F) rerme ()X A
=0 j=0
p—m—n—1 m n i+m+n p—m—n—i
_ 1_5 1+€ m,2n 1_77 s
2=y (5 (5 e ) P )i
784 i=0 j=0 I

785 As a|p, = B|F, then we must have that for a fixed 0 <i<p—1—m—n

p—m—m—i—1 p—m—n—1
. L+n 2 0
786 Z a” <2> Pj(’y )(77) — Z /BZ]PJ(’Y )(77)
787 =0 =0

788 By telescoping the sum, we have

p—m—n—1i p—m—m—1
- ;0 ,0 ,0
0 (4.21) > BuP ) = Sii (P13 (m) + P ()

790 Jj=0 j=0

791 where S;; = i:O(—l)k"’jﬁik with S; p—m—n—; = 0 due to (4.20).
792 Combining (22.7.16) and (22.7.19) of [1] gives the following relation

1 j | + 2
o (422) POO@)+ PO (z) = 222 ((7 T9) prd) () 4 WP‘“)(@)

794 A 2 j+1 771 j+1 7

795 for non-negative j where we assume that Pﬁ”f) = 0. Hence, substituting (4.22) into
796 (4.21), we have

PR PR 1 (v ) yHj+2
o Y BPMYm = Y Syt (e P T TEZP A ) ).
= 6 J7 7 (n) = J 2 ] + 1 j—1 (T}) + ] + 1 J (77)

799 Matching coefficients, we have that

<00 S SO o A Y~ e Y NG e/
ij — . i . i, = . i, . : ij-
801 ’ j+1 7Y J+2 ! j+2 G+1G+2)7"
802 Using the inequality (a + b)? < 2a% + 2b%, we have that
. 2 . 2
2 THIALN Y+2j+3 2
803 an <2 —2——) B2 —— ) SE.
804 ! ( J+2 ) Prg ((] +1)(+2) !
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Inserting the above into (4.19), it suffices to show that there exists a constant C
independent of p and ¢ such that

p—1l—m—m—i (] + 1)2 (M)z

j+2 5i2,j+1
= (i+i+1)% (p—i=5)(i+j+p)
p—m—n—1 2
<C — . .1 — .
it lp—i—j+ 1+ +p)
and
2
A—m—n—i (4 2 (_y+2j+3
(G4 1) ((fin@4a)) S?,
= (i+i+1)°  (p—i=j)(+]j+p)
p—m—n—1t 2 1
<C — — — .
= ; i+j+1(p—i—j+1)(i+j+p)

For the first expression, we note that v+ j + 1 ~ i 4+ j + 1 hence the inequality
follows trivially. As for the second expression, we note that

YH2+3 i+l
G+DG+2)  (G+1)?

Hence, we wish to show that

p—l—i—n—i SQ 1
2 GADRaH A0 —i- )T+
p—m—n—i 2
<c 2 :

i+j+1l(p—i—j+1)(i+j+p)

7=0

By Corollary 4.11, there exists a C' independent of p and 4, and we are done with the
case of F’ consisting of a single face.

In the case where F’ consists of two or three faces, we can simply bootstrap the
argument. For example, if F/ = F| U Fj where F|, F} are two distinct faces, then

|Es,pul| < CH55\F{,FUH < CHES\(F{UFQ’),FUH = CHES\F/,FUH : o

4.5. Hardy Inequalities. It remains to prove the Hardy inequalities used.
LEMMA 4.10. Let {v;}¥_, € R satisfy

(4.23) > v =0,

then for j a positive integer, there exists a constant C(j) independent of p such that
2
3

p 2 p
> - <cy :
—(i+1)P+p+1)I(p—i+1) —(i+1)+p+1)(p—it+1)

where S; = Y1 _o k-
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Proof. By (4.23), we have that S; = — Y} _, | vg, our inequality follows if

. 2
p/2 (22:0 Uk) o2 v}
(4.24) ; (TG +pr 1V —it1) SC;(¢+1)(i+p+l)j(P—i+1)j
and
(4.25)
P (* D kit ”k)2 u v}
i_§+1(i+1)3(z’+p+1)3‘( —i+ 1) z/: (+D+p+1)(p—it1)

both hold with the constant C independent of p.
Hardy’s inequality for weighted sums states that for non-negative ay, b;, ¢;,

2
(4.26) Z Z ap | b; < CZ afcl-
i=0

1=0 k=0

1/2
with C < 2v/24 where A := sup,.¢y (30, bi)l/2 (Z?:o ci_l) < 00 [19, p. 57]. For

(4.24) our result follows if we set a; = |v;|, b; ' = (i +1)*(i +p+ 1)/ (p —i + 1)7 and
ct=0G+DGE+p+1)I(p—i+1) fori=0,...,p/2, and let a; = 0,b; = 0,¢; =
=+ 1) 1) 1)7 f 0 2, and 1 0,b; =0 1

for ¢ > p/2. Tt remains to show that A does not grow with p.
We note that

n n
20;1 <p% Z(Z +1) ~ n?p?
i=0 i=0

Furthermore, the supremum can be reduced to over the interval n € [0,p/2] due to
the padding of zeros, hence

p/2 1
A*m sup nPp¥ —
nel0,p/2] Z 3i+p+1)i(p—i+1)
2 92 p/2 1
< sup np]/ — dx
nel0,p/2] n  (x+1)3(p—p/2+1)ips

Q

1 2
2
sup n - < 0.
n€l0,p/2] (2(71 + 1)2 (p + 2)2)

For (4.25), we first transform the sum such that the index starts at 0 by mapping
the indices i > p—i,k > p—k

. 2
p/2—1 — i-1 )
k=0 Yp—k

; (p—i+1)32p—i+1)(i+1)

K3

2
p—1t
p—i+1)2p—i+1)(i+1)7"

v

M\

=0

Our result follows if we set a; = |vp_i|,b; " = (p— i+ 1)3(2p — i + 1)7 (i + 1)' it =
p—i+1)2p—i+1)(i+1) fori=0,...,p/2—1,and let a; = 0,b; = 0,¢; = 1 for
1 > p/2. It remains to show that A does with not grow with p.
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~ Proceeding similarly as before, note that » ', it < @2y G+ 1) &
p?*tind*tl The supremum can be reduced to over the interval n € [0,p/2 — 1] as
before. Calculating, we have

p/2—-1 1
A2~ sup  pitlpitt . _ '
nel0,p/2—1] Z —i+1)32p—i+1)7(i+ 1)
+1 p/2 1
B
n€l0,p/2—1] n (p_p/2+ 1)3(l‘+ 1)'7
i+1 | 2(04+1) (p+2)7 =27 (p+2) (n+1)7
~ sp 2G-D (T 17 (p42)7 j>1
nE[O,p/Q 1 P* | log () j=1
< 0. 0

The case j = 1 corresponds to Lemma 6.5 of [4] in which it was stated (but not proved

explicitly) that the constant C'(1) is independent of p. Lemma 4.10 deals with the

general case j € N and in addition proves explicitly that C(j) is independent of p.
The following Hardy inequality is required for the face extension inequalities:

COROLLARY 4.11. Let {vz}p o € R where k is an integer 1 < k < p, and S; =
Z;ZO( 1)7v;, then there exists a constant C independent of p,k such that

p—k
v?

(i +E)p—k—i+1)(p+k+i)]

s?
(i+12(i+k)p—k—i+D(p+k+1i) <€

M
M |

i=0 i=0

Proof. Since the proof technique is the same as Lemma 4.10, we will only tersely
discuss the details below.

As before, split the inequality into two, similar to (4.24) and (4.25). For the
first sum, we set a; = |v;|, b; ' = (i + 1)2(i +k)(p—k —i+1)(p+k+i) and ¢; ' =
(i+k)p—k—i+1)(p+k+i)fori=0,.., 2% Then, S0 ;' < (0+k)p—
k)> " o(i4+ k) ~ (p+ k)(p — k)(n® + kn) and the following calculation gives that A
is bounded:

p—k
2 1
A%~ E)Yp—k)(n®>+k
nefo‘ff%k](“ Jp=R)(n” + n>;(i+1)2(i+k)(pfkfz‘+1)(17+k+i)

(p—k)/2
< sup (n®+ kn)/
] n

—k
nel0, 252

(z+1)%(z + k) du

p—k p—k

2 1 2 1
<  su n2/ 7dx—|—kn/ —dz < 0.
< ne[O,’E)%k] . (x+1)3 n (z+ 1)%(z + k)

For the second sum, first transform the sum to start the index 0 again. Next, set
o () b: (p—k—i+17( =)= )i+ 1. = (=)~ )i+ U
for i =0,..., 25" — 1. Calculating, we have > " ¢; < p ZZ oli+1) = p*n? and
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thus

(6]
(7]

(8]
(9]

A2

M.

M.

M.

M. AINSWORTH, AND S. JIANG

p—k_1
2
1
2,2
~ sup pn - - -
nef0,25% 1] ; (P=k—i+1)*(p—0)2p—i)(i+1)
p_k
< sup an/ : ! dx
" nelo,25E 1] no (p—k=(-k)/2+1)*(p—(p—Fk)/2)(z+1)
2
pn p—k
~ sup log ( > < 00. O
nefo,zzh—1) (P = K)2(p+ k) 2n
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