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Abstract. A preconditioner for the mass matrix arising from high order finite element discreti-4
sation on tetrahedra is presented and shown to give a condition number that is independent of both5
the mesh size and the polynomial order of the elements. The preconditioner is described in terms of a6
new, high-order basis which has the usual property whereby individual functions are associated with7
distinct geometric entities of the tetrahedron. It is shown that the basis enjoys the property that8
the resulting mass matrix is spectrally equivalent to its own diagonal with constants independent of9
h and p. Although the exposition is based on an explicit basis, the preconditioner can be applied10
to any choice of basis. In particular, the basis can be used to specify a basis independent Additive11
Schwarz Method (ASM), meaning that, in order to apply the preconditioner to an alternative basis,12
one only need implement an appropriate change of basis.13
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1. Introduction. In the p-version of the finite element method (p-FEM), one17

can obtain exponential rates of convergence [9, 31, 33], but the mass and stiffness18

matrices are generally poorly conditioned. The mass matrix for standard hierarchical19

bases have condition numbers that can grow as O(p12) [2,16,21,24] while other bases20

such as Bernstein or Peano can exhibit even worse growth [20]. Large condition21

numbers can cause round off errors or mean that the cost of solving the linear systems22

unreasonably dominates, each of which potentially neutralizes the advantages of high23

order methods.24

Effective preconditioners for the 3D stiffness matrix have been developed using25

domain decomposition [8, 36] methods. Depending on the sophistication and cost of26

the algorithm, condition numbers of the preconditioned stiffness matrix range from27

uniform to logarithmic growth in p [15,22,26,30]. In contrast, until recently, there has28

been a dearth of preconditioners for the mass matrix on simplicial elements, with the29

exception of [4] which addressed the triangle case. In the present work, we develop a30

non-overlapping domain decomposition preconditioner for the mass matrix on tetra-31

hedra which gives condition numbers independent of h and p. The preconditioner32

means that, e.g. in explicit time-stepping, one can increase p without fretting over33

the convergence of conjugate gradient.34

Preconditioners for the mass matrix M for high-order C0-conforming finite el-35

ement methods have applications beyond just explicit and implicit time-stepping36

schemes. For instance, in the class of stationary equations, the singularly perturbed37

problem [6, 14], which arises in plate, beam and shell theories, gives rise to linear38

systems of the form M+ ε2S where S is the stiffness matrix and 0 < ε� 1. Similarly39

to the 2D case [5], our mass matrix preconditioner can be applied to the singularly40

perturbed system to give a condition number independent of the parameter ε on the41

optimal, single layer, anisotropic hp meshes which are advocated in [32] and shown42
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2 M. AINSWORTH, AND S. JIANG

to give robust exponential convergence in ε. By way of contrast, existing precondi-43

tioners [34] for anisotropic elements rely on a geometrically-graded mesh or tensor44

product elements in order to be robust in ε.45

The preconditioner is described in terms of a new, high-order basis which has the46

usual property whereby individual functions are associated with distinct geometric47

entities of the tetrahedron. However, our basis enjoys the property that the resulting48

mass matrix is spectrally equivalent to its own diagonal with constants independent49

of h and p. Although the exposition is based on an explicit basis, the preconditioner50

can be applied to any choice of basis. In particular, the basis can be used to specify a51

basis-independent Additive Schwarz Method (ASM), meaning that, in order to apply52

the preconditioner to an alternative basis, one only needs to implement an appropriate53

change-of-basis.54

In principle, the construction of an Additive Schwarz preconditioner for the mass55

matrix on tetrahedra should mirror the case for triangles [4]. In practice, however,56

one encounters a slew of difficulties associated with the stable decomposition of the57

face spaces which are not present in the the 2D case. In fact, even the choice of edge58

spaces and inner products turns out to be different from the 2D case owing to the59

need to decide how to extend the definition of the edge functions onto adjacent faces:60

in 2D one can rely on static condensation, but in 3D one is working with discrete61

trace norms defined implicitly by the Schur complement with respect to the interior62

functions in 3D. The net result is that the tetrahedral preconditioner is quite different63

from the case of the triangle. That said, our preconditioner for tetrahedra can be64

specialized to triangles to obtain a different preconditioner than the one developed65

in [4] which is simpler than the preconditioner in [4] and, in addition, gives a condition66

number roughly half the size.67

The remainder of the paper is organized as follows. In section 2, we define the basis68

functions and state the main result. In section 3, we present illustrative numerical69

examples such as singularly perturbed problem and time-stepping. Finally in section70

4, we prove the inequalities and polynomial extension lemmas needed for the main71

result.72

2. Basis Definition and Main Result. Let T be the reference tetrahedron73

in R3 with vertices v1 = (−1,−1,−1), v2 = (1,−1,−1), v3 = (−1, 1,−1), v4 =74

(−1,−1, 1), and let F1 and E1 be the face and edge given by75

F1 := T ∩ {z = −1},76

E1 := T ∩ {z = −1} ∩ {y = −1}.7778

Let p ≥ 1 be a given integer, and let Pp(D) be the space of polynomials of total degree79

p on a domain D. Let X := Pp(T ), and λi ∈ P1(T ) for i = 1, 2, 3, 4 be the barycentric80

coordinates of T associated with vertex vi; i.e. λi(vj) = δij .81

We begin by introducing a particular basis for Pp(T ) which, as usual, consists of82

functions associated with vertices, edges, faces and the interior of the tetrahedron.83

However, the actual choice of functions differs from those typically used in the liter-84

ature.85

2.1. Basis functions. The classical Jacobi polynomials [1] on [−1, 1] are de-86

noted by P
(α,β)
n , where n is the order of the polynomial and α, β > −1 are weights,87

and satisfy88 ∫ 1

−1

(
1− x

2

)α(
1 + x

2

)β
P (α,β)
n (x)2 dx =

2(α+ n)!(β + n)!

n!(α+ β + 2n+ 1)(α+ β + n)!
.89

90
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PRECONDITIONING THE MASS MATRIX 3

For non-negative integers m, q, let Φ
(m)
q (x) ∈ Pq([−1, 1]) be defined by91

Φ(m)
q (x) :=

(−1)q

q + 1
P (m,1)
q (x),(2.1)92

93

and Ξq ∈ Pq([0, 1]2) be given by94

Ξq(l1, l2) := P (2,2)
q

(
2l2

l1 + l2
− 1

)
(l1 + l2)q.(2.2)95

96

Interior Basis Functions. For p ≥ 4, let97

ωijk := λ1λ2λ3λ4Ξi(λ1, λ2)P
(2i+5,2)
j

(
2λ3

1− λ4
− 1

)
(1− λ4)

j
P

(2i+2j+8,2)
k (2λ4 − 1)98

99

for 0 ≤ i, j, k, i + j + k ≤ p − 4. Note that ωijk vanishes on the boundary of T due100

to the factor λ1λ2λ3λ4. The set {ωijk} is an orthogonal basis for XI := X ∩H1
0 (T )101

with respect to the L2(T ) inner product (see Lemma 4.1).102

Face Basis Functions. For p ≥ 3, the basis functions associated with the face103

F1 are given by104

ψ
(1)
ij := λ1λ2λ3Ξi(λ1, λ2)P

(2i+5,2)
j

(
2λ3

1− λ4
− 1

)
(1− λ4)

j
Φ

(2i+2j+8)
p−3−i−j (2λ4 − 1)105

106

for 0 ≤ i, j, i+ j ≤ p− 3. In particular, the presence of the factor λ1λ2λ3 means that107

these functions vanish on the remaining three faces. The basis functions on the other108

three faces Fk are defined in an analogous fashion to give the face spaces XFk :=109

span{ψ(k)
ij }. The functions provide an orthogonal basis for XFk (e.g. (ψ

(k)
ij , ψ

(k)
mn) ∝110

δij,mn where (·, ·) is the L2 inner-product over T ); see Lemma 4.1.111

Edge Basis Functions. For p ≥ 2, the basis functions associated with the edge112

E1 are chosen as follows:113

χ
(1)
i := λ1λ2Ξi(λ1, λ2)

qi(λ3, λ4) + qi(λ4, λ3)

2
, 0 ≤ i ≤ p− 2,114

115

where the function qi is given by116

qi(l1, l2) := Φ
(2i+5)
j

(
2l1

1− l2
− 1

)
(1− l2)

j
Φ

(2i+2j+6)
p−2−i−j (2l2 − 1)(2.3)117

118

with j = b(p− i− 2)/2c. The basis functions on the remaining edges Ek are defined119

analogously to give the edge spaces XEk := span{χ(k)
i }.120

The edge basis functions have the following properties:121

1. locally supported: vanish on the two faces which do not contain edge E1122

(owing to the factor λ1λ2);123

2. symmetry: the values on the two non-zero faces satisfy the condition that124

χ(r, s, t, 0) = χ(r, s, 0, t) for all r, s, t;125

3. orthogonality: (χ
(k)
i , χ

(k)
j ) ∝ δij (see Lemma 4.1).126
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4 M. AINSWORTH, AND S. JIANG

Vertex Basis Functions. The function associated with the vertex v1 is given127

by128

ϕ1 :=
1

3
λ1

(
q(λ2, λ3, λ4) + q(λ3, λ4, λ2) + q(λ4, λ2, λ3)

)
129
130

where131

(2.4)
q(l1, l2, l3) := Φ

(2)
i

(
2l1

1− l2 − l3
− 1

)
(1− l2 − l3)

i
Φ

(2i+3)
j

(
2l2

1− l3
− 1

)
× (1− l3)

j
Φ

(2i+2j+4)
p−1−i−j (2l3 − 1),

132

with i = bp2c and j = b i2c. The basis functions on the remaining vertices are defined133

in an analogous manner to give the vertex spaces XVk := span{ϕk}.134

The vertex basis functions have the following properties:135

1. local support: ϕ1(v1) = 1 and vanishes at the remaining vertices;136

2. symmetry: the values on the three non-zero faces satisfy the condition that137

ϕ1(r, s, 0, 0) = ϕ1(r, 0, s, 0) = ϕ1(r, 0, 0, s) for all r, s.138

It is not difficult to see that the basis functions are linearly independent and a139

simple counting argument shows that the union of the sets gives a basis for X.140

Basis Functions on a Mesh. Let Ω be a bounded three-dimensional domain,141

and let P be a partitioning of Ω into the union of disjoint tetrahedra such that the142

intersection of any two distinct elements is either a single common vertex, edge or face.143

Each element K ∈ P is the image of the reference element T under a (possibly non-144

affine) map FK such that there exists positive constants θ,Θ such that the Jacobian145

DFK satisfies146

θ|K| ≤ |DFK(x)| ≤ Θ|K| ∀x ∈ K.(2.5)147148

It is worth noting that this condition does not place constraints on the shape regularity149

of the mesh, and, in particular, allows for “needle” or “slab” elements.150

The basis functions on an element K ∈ P are defined to be pull-backs using the151

map FK in the usual manner, e.g.152

ϕ1,K(x) := ϕ1(F−1
K (x)), x ∈ K.153154

The fact that the basis functions are associated with vertices, edges and faces, together155

with the symmetry properties means that enforcing global conformity follows the156

same procedure for hierarchic bases. In particular, one needs to number the degrees157

of freedom in a systematic manner to ensure that the edge and face basis functions158

will be oriented correctly. The standard finite element sub-assembly gives the global159

mass matrix160

M =
∑
K∈P

ΛKMKΛT
K161

162

where ΛK is the local assembly matrix and MK is the element mass matrix expressed163

using the above basis. For more details about the assembly process, see [3].164
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PRECONDITIONING THE MASS MATRIX 5

2.2. Main result. The main result states that the diagonal of the mass matrix165

is spectrally equivalent to the full matrix:166

Theorem 2.1. Suppose that the basis is chosen as in subsection 2.1. Then, there167

exists constants τ,Υ independent of h, p such that168

τ diag(M) ≤M ≤ Υ diag(M).169170

Proof. Let M̂ be the mass matrix on the reference element T , then (2.5) implies171

that172

θ|K|M̂ ≤MK ≤ Θ|K|M̂.(2.6)173174

We shall show below that the following condition holds with constants c, C inde-175

pendent of p:176

cdiag(M̂) ≤ M̂ ≤ C diag(M̂).(2.7)177178

Then, sub-assembly together with (2.6) and (2.7) shows that179

cdiag(M) = c
∑
K∈P

ΛKdiag (MK) ΛT
K ≤ c

∑
K∈P
|K|ΛKdiag

(
M̂
)

ΛT
K

≤
∑
K∈P
|K|ΛKM̂ΛT

K ≤ C
∑
K∈P
|K|ΛKdiag

(
M̂
)

ΛT
K

≤ C
∑
K∈P

ΛKdiag (MK) ΛT
K = C diag(M)

(2.8)180

181

where we dropped the dependence on θ,Θ.182

It remains to show that condition (2.7) holds: that is, there exists constants c, C183

independent of p such that184

c~uTdiag(M̂)~u ≤ ~uTM̂~u ≤ C~uTdiag(M̂)~u, ∀~u.185186

The result is trivial for p = 1, 2 and 3 by equivalence of norms on the spaces P1,P2187

and P3. It suffices to consider the case p ≥ 4.188

Let u ∈ X be the function corresponding to ~u so that ~uTM̂~u =‖u‖2 where ‖·‖ is189

the standard L2 norm over T . The vector ~u can be decomposed as follows:190

~u = [~uI , ~uF1
, . . . , ~uF4

, ~uE1
, . . . , ~uE6

, ~uV1
, . . . , ~uV4

]191192

where ~uI corresponds to the coefficients of the interior basis functions ωijk or, equally193

well, a function uI ∈ XI etc. This partitioning induces a partitioning of the mass194

matrix into subblocks. Moreover, the orthogonality of the basis functions within each195

block (but not necessarily between different blocks) means that196

diag(M̂) =


M̂I

M̂F1

. . .

M̂V4

 .197

198

Thus,199

~uTdiag(M̂)~u =‖uI‖2 +

4∑
i=1

‖uFi‖
2

+

6∑
i=1

‖uEi‖
2

+

4∑
i=1

‖uVi‖
2

200

201
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6 M. AINSWORTH, AND S. JIANG

where uI ∈ XI , uFi ∈ XFi , uEi ∈ XEi and uVi ∈ XVi .202

Condition (2.7) hence reduces to showing that for all u ∈ X, there exist positive203

constants c, C independent of p such that204

c

‖uI‖2 +

4∑
i=1

‖uFi‖
2

+

6∑
i=1

‖uEi‖
2

+

4∑
i=1

‖uVi‖
2

 ≤‖u‖2 ≤
C

‖uI‖2 +

4∑
i=1

‖uFi‖
2

+

6∑
i=1

‖uEi‖
2

+

4∑
i=1

‖uVi‖
2

 .

(2.9)205

206

The upper-bound follows at once thanks to the triangle inequality. The proof of207

the lower bounds is less straight forward and relies on a number of technical estimates208

whose proofs are postponed to section 4.209

Lemma 4.4 and the fact that ‖u‖∞ ≤ Cp3‖u‖ [38] gives the following bound on210

the vertex components:211

‖uVi‖ =
∥∥u(vi)ϕi

∥∥ ≤‖ϕi‖‖u‖∞ ≤ C‖u‖ , i = 1, . . . , 4.212213

Now, by Lemma 4.5, we obtain214

‖uEi‖ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi

∥∥∥∥∥∥ ≤ C‖u‖ , i = 1, . . . 6.215

216

We next apply Corollary 4.7 to each individual face to obtain217

‖uFi‖ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi −
6∑
i=1

uEi

∥∥∥∥∥∥ ≤ C‖u‖ , i = 1, 2, 3, 4.218

219

Finally, a bound for uI is an easy consequence of the triangle inequality220

‖uI‖ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi −
6∑
i=1

uEi −
4∑
i=1

uFi

∥∥∥∥∥∥ ≤ C‖u‖ .221

222

Collecting these estimates establishes the lower bound in (2.9).223

3. Numerical Examples.224

3.1. Preconditioned mass matrix. We first illustrate Theorem 2.1 for a single225

element. The left side of Figure 1 shows the condition number of the preconditioned226

mass matrix on the reference tetrahedron. As predicted by Theorem 2.1, the condition227

numbers remain bounded as p is increased.228

To illustrate the h independence of the preconditioned system, we consider the229

two meshes illustrated in Figure 2. The right side of Figure 1 shows the condition230

number of231

Ms := P−1/2MP−1/2
232233

where M is the global mass matrix on the cube and P = diag(M) on these meshes.234

It is observed that the condition numbers on the refined meshes track the condition235

numbers obtained on a single tetrahedron as suggested by (2.8).236
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Fig. 1. Figure illustrates the condition number of the preconditioned mass matrix on a meshes
of six elements, 24 elements and on a mesh consisting of a single element. The bounded condition
number of the preconditioned system is in agreement with Theorem 2.1.

Fig. 2. Figure illustrating the two meshes on the cube. The mesh on the left contains six
elements and the mesh on the right contains 24 elements.

3.2. Singularly Perturbed Problem. The utility of the preconditioner is not237

confined to the pure mass matrix. Consider the following problem238

u− ε2∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3.1)239

240

where 0 < ε � 1 and f ∈ L2(Ω) which is prototypical of several class of problem241

arising in mechanics [6,14]. The p-version Galerkin discretization of (3.1) leads to an242

algebraic problem of the form243

(M + ε2S)~u = ~f(3.2)244245

where S is the stiffness matrix and ~f is the load vector corresponding to f .246

Solutions to (3.1) generally exhibit boundary layers which become sharper as247

ε → 0; see Figure 3 for a plot of the solution for f = 1. If the order of the finite248

element method p is large enough so that O(pε) ≥ 1, then one obtains exponential249

convergence in p on a quasi-uniform mesh [23]. If ε� 1, then it is unrealistic to choose250

the degree p = O(ε−1) � 1. Instead, a single layer of anisotropic elements of width251

O(pε) around the boundary suffices [23] to give robust exponential convergence in p252

independent of ε. Whilst this restores the accuracy of the resulting approximations,253

an undesirable side-effect of the anisotropic elements is that the condition number of254
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8 M. AINSWORTH, AND S. JIANG

Fig. 3. Cross-section of the solution to (3.1) for ε2 = 10−4 and p = 10 on a corner of the cube
showing the presence of a boundary layer.

Fig. 4. Figure illustrating the mesh used to approximate the singularly perturbed problem on
an octant of the cube. The inset shows the submesh of elements in the corner. Note the needle and
slab elements of width O(pε) encompassing the boundary of the cube.

(3.2) grows rapidly as ε→ 0. This means that the system (3.2) becomes increasingly255

difficult to solve unless a preconditioner is used. Toselli and Vasseur [34,35] developed256

a domain decomposition preconditioner for tensor product elements which results in257

a condition number independent of ε and growing as 1 + log2 p. Unfortunately, the258

analysis of Toselli and Vasseur relies strongly on a tensor product structure and only259

holds on a geometrically graded mesh. In particular, it does not apply to the boundary260

layer mesh of [23] described above nor to meshes of tetrahedra. There are effectively no261

existing preconditioners which are robust in the aspect ratio ε on simplices. However,262

it turns out that using a mass matrix as a preconditioner gives a condition number263

independent of ε with a O(p2) growth on the boundary layer mesh described above.264

A similar idea was first explored in [5] in the two dimensional case. We shall need265
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PRECONDITIONING THE MASS MATRIX 9

the following result:266

Lemma 3.1. Let K be a slab or needle tetrahedron with the smallest side length of267

size pε� 1, then for all polynomials u ∈ Pp(K), there exists a constant C independent268

of ε, p such that269

‖∇u‖2K ≤ C
p2

ε2
‖u‖2K .270

271

Proof. Consider the case of the slab tetrahedron first. Without loss of general-272

ity, let K be the slab tetrahedron defined by the vertices (0, 0, 0), (pε, 0, 0), (0, 1, 0),273

(0, 0, 1) and let K̂ be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).274

Given u ∈ Pp(K), let û(x̂, ŷ, ẑ) = u(pεx̂, ŷ, ẑ) be the polynomial defined on K̂,275

then by a change of variables276

‖∇u‖2K =

∫
K

|∇u|2 dxdydz277

=

∫
K̂

1

(pε)2
(∂x̂û(x̂, ŷ, ẑ))2 + (∂ŷû(x̂, ŷ, ẑ))2 + (∂ẑû(x̂, ŷ, ẑ))2pε dx̂dŷdẑ278

≤ 1

pε

∫
K̂

|∇̂û|2 dx̂dŷdẑ279

≤ CSp
3

ε

∫
K̂

û2 dx̂dŷdẑ280

=
CSp

3

ε

∫
K

u2 1

pε
dxdydz = CS

p2

ε2
‖u‖2K281

282

where we used the standard Schmidt’s inequality‖∇u‖2K̂ ≤ CSp
4‖u‖2K̂ on the reference283

element K̂ [10, 25].284

The proof for the needle element follows similarly by using the transformation285

û(x̂, ŷ, ẑ) = u(pεx̂, pεŷ, ẑ).286

The above lemma in conjunction with Theorem 2.1 gives rise to the following bound287

cdiag(M) ≤M + ε2S ≤

(
1 + Cε2 p

2

ε2

)
M ≤ Cp2diag(M)(3.3)288

289

on a mesh where a layer of slab and needle elements of width pε are placed along290

the boundary; see Figure 4 for an figure of the mesh used on an octant of the cube.291

Equation (3.3) shows that using the mass matrix preconditioner to precondition the292

system (3.2) results in a condition number that grows as O(p2) but, crucially, remains293

independent of ε, even on an unstructured mesh.294

To illustrate the overall effectiveness of the approach of using the boundary layer295

mesh from [23] alongside the mass matrix preconditioner, we consider problem (3.1)296

with f = 1 and Ω = (−100, 100)3. Due to symmetry of the problem, it suffices to only297

consider the octant of the cube given by (0, 100)3 which we illustrated in Figure 4.298

The condition number of the preconditioned matrices299

diag(M)−1/2
(
M + ε2S

)
diag(M)−1/2

300
301

is reported in Table 1 where it is seen that the condition number is indeed bounded302

independent of ε.303
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10 M. AINSWORTH, AND S. JIANG

Table 1
Condition number of the singularly perturbed matrices obtained using the preconditioner for the

pure mass matrix. Observe the condition number exhibits moderate growth in p but remains bounded
independent of ε.

ε2 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9
1e-1 16.99 19.76 28.56 33.88 59.27 83.03
1e-3 22.61 21.17 30.65 30.02 39.20 39.04
1e-5 23.24 22.09 32.75 31.41 42.32 40.15
1e-7 23.31 22.25 33.08 31.67 42.78 40.38
1e-9 23.31 22.27 33.11 31.70 42.83 40.41

3.3. Time-Stepping. Finally, we discuss the application of the preconditioner304

to time-stepping problems. Let305

A(µ, ν) := µM + ν∆tS.306307

For a fully explicit scheme ν = 0, and Theorem 2.1 implies that the preconditioner308

will be uniform in the polynomial order p. For a implicit scheme ν > 0, we once again309

take advantage of Schmidt’s inequality, which states that there exists a constant CS310

independent of h, p such that S ≤ CS p
4

h2 M, to deduce that311

µM ≤ A(µ, ν) ≤ (µ+ CS
p4

h2
ν∆t)M ≤ 2 max

(
µ,CS

p4

h2
ν∆t

)
M.312

313

In other words, preconditioning using the diagonal of the mass matrix gives314

cond(Ã(µ, ν)) ≤ 2Υ

τ
max

(
1, CS

p4ν∆t

h2µ

)
(3.4)315

316

where Ã(µ, ν) = diag(M)−1/2A(µ, ν)diag(M)−1/2 and τ,Υ are the constants from317

Theorem 2.1; in practice one does not see the O(p4) growth owing to the small value318

of the multiplicative factor CSν∆t/µ.319

For a concrete example, consider a system of nonlinear reaction-diffusion equa-320

tions [13] which exhibits pattern formation [27]:321

(3.5)

∂u

∂t
= −uv2 + α(1− u) + du∆u

∂v

∂t
= uv2 − (α+ β)v + dv∆v

(x, y) ∈ Ω, t > 0,322

where α = .05, β = .02, du = 2 × 10−5, dv = 10−5 and Ω a hemisphere with radius323

1. Figure 7 illustrates the solution u at t = 1500. It is commonplace in applications324

for the diffusion coefficients to be significantly smaller in magnitude than the reac-325

tion terms. For example, the Brusselator system arising in computational chemistry326

considered in [17, 37] or the Schnakenberg system arising in developmental biology327

considered in [28,39] each have diffusion coefficients at least two orders of magnitude328

smaller than the corresponding reaction factors.329

Using a standard Galerkin approximation in the spatial dimensions and an IMEX330
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scheme [28] for the temporal dimension, one arrives at the follow linear systems:331

(3.6)

M~un+1 −M~un

∆t
= −~gn + α~1− αM~un+1 − du

2

(
Sun+1 + Sun

)
M~vn+1 −M~vn

∆t
= ~gn − (α+ β)M~vn+1 − dv

2

(
Svn+1 + Svn

)332

where ~un, ~vn is the finite element approximation at time step n and ~gn is the non-333

linear moment associated with uv2 at time step n. An IMEX scheme is chosen since334

the diffusion operator is stiff and necessitates prohibitively small time steps were an335

explicit method to be chosen.336

The first equation of (3.6) involves inverting the matrix A
(
1 + α∆t, du/2

)
at337

each time step. Since µ � ν and numerical evidence suggests that the constant338

CS < 1
5 [25], the constant in front of the O(p4) growth in (3.4) is quite small. In339

Figure 5, we show the condition number of Ã
(
1 + α∆t, du/2

)
with different ∆t and340

order p. In practice, one generally chooses ∆t depending on p, but for illustrative341

purposes here, we vary ∆t and p independently. Note that the condition number for342

p ≤ 10 does not yet attain the asymptotic O(p4) growth even for artificially large343

values of ∆t. Results for the case ∆t = 5 also exhibit a transition from constant344

condition number to a slight growth with p as predicted by (3.4).

4 5 6 7 8 9 10

101.5

102

102.5

1

4

p

C
o
n

d
it

io
n

n
u

m
b

er

∆t = .1
∆t = 1
∆t = 5
∆t = 10
∆t = 50
∆t = 100
∆t = 1000

Fig. 5. Figure illustrating the condition number of the preconditioned system arising from the
discretization of the reaction-diffusion system on the hemisphere consisting of 60 elements. Note
that we do not yet observe the O(p4) growth for p ≤ 10 even for very large ∆t.

345
The practical value of the preconditioner is illustrated in Table 2 where we display346

the [min, median, max] iteration count resulting from using preconditioned conjugate347

gradient (PCG) to perform time stepping for the Gray-Scott example to t = 100 with348

∆t = 1 for the v variable. The number of iterations is seen to remain bounded as349

suggested by the condition numbers depicted in Figure 5. Figure 6 shows the residuals350

of PCG at t = 0 for the v variable which are seen to decrease at a steady rate.351

3.4. Application to the Nonsymmetric Systems. The mass matrix precon-352

ditioner is also useful in cases where the linear system is not symmetric. For instance,353
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12 M. AINSWORTH, AND S. JIANG

Table 2
Table displays the [min, median, max] iteration count of PCG applied to the system

Ã
(
1 + α∆t, du/2

)
resulting from the IMEX scheme (3.6) for a period of 100 seconds with ∆t = 1

on 60 elements for the reaction diffusion equation on the half-hemisphere.

p Preconditioned Iteration Count
4 [13, 14, 18]
6 [12, 13, 17]
8 [11, 11, 15]
10 [7, 10, 15]

0 5 10 15

10−8

10−7

10−6

10−5

10−4

Iterations

R
es

id
u

al
s

Residual of PCG

Fig. 6. Plot of the residuals resulting from the preconditioned conjugate gradient method applied
to the Gray-Scott example with p = 6 on the hemisphere at t = 0 for the v variable.

consider the linear advection equation354

∂u

∂t
= ν · ∇u, (x, y) ∈ Ω, t > 0(3.7)355

356

subject to u = 0 on ∂Ω, t > 0 and u(x, 0) = u0(x) in Ω, where ν is a velocity field.357

For simplicity, we consider a standard Galerkin approximation in space and backward358

Euler in time. The resulting linear system is359

B~un+1 = M~un, B := M + ∆tC(3.8)360361

where ~un is the finite element approximation at time n, C is the convective matrix362

with entries Cij = (ϕi, ν · ∇ϕj) and ϕi, ϕj are the basis functions. Observe that363

M is SPD whilst C is skew-symmetric and thus has a purely imaginary spectrum.364

Moreover, we have for any vector ~u365

|~uTC~u| ≤ |(u, ν · ∇u)| ≤‖ν‖L∞‖u‖‖∇u‖ ≤
CSp

2

h
‖ν‖L∞‖u‖

2
=
CSp

2

h
‖ν‖L∞ ~u

TM~u

(3.9)

366
367

where CS is the constant arising from Schmidt’s inequality. In particular, this means368

that if ∆t � C h
p2 , then B ∼ M which suggests using M as a preconditioner for B.369
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Fig. 7. Plot of u from above in the Gray-Scott equations (3.5) with p = 6 (left) on a mesh of
the hemisphere with 1159 elements (right) at t = 1500 with ∆t = 1.

The resulting preconditioned matrix370

B̂ := M−1/2BM−1/2 = I + ∆tM−1/2CM−1/2
371372

has eigenvalues which lie on the segment S = [1 − iΛ, 1 + iΛ] ⊂ C with Λ = C∆tp
2

h .373

If GMRES [29] is used to solve systems involving the matrix B̂, then, thanks to [12,374

Corollary 2.8] and [29, Proposition 6.32], the residual at the k-th iteration is bounded375

by376

‖~rk‖ ≤
Λ√

1 + Λ2

(
Λ

1 +
√

1 + Λ2

)k−1

‖~r0‖(3.10)377
378

where ~r0 is the initial residual. This estimate shows that if ∆t is small, e.g. such379

that Λ ≤ 1, then the quantity Λ
1+
√

1+Λ2
< 1/2 and one obtains rapid convergence. In380

practice, one chooses ∆t ∼ h/p so that Λ ∼ O(p) meaning that GMRES will converge381

at a rate which degenerates slowly with the order p.382

The above discussion suggests using the preconditioner for the mass matrix as a383

preconditioner for B, giving rise to the preconditioned operator384

B̃ := diag(M)−1/2Bdiag(M)−1/2 = MS + ∆tCS(3.11)385386

with MS = diag(M)−1/2Mdiag(M)−1/2 and CS = diag(M)−1/2Cdiag(M)−1/2. The387

estimate (3.9) along with Theorem 2.1 reveals that388

|~uTCS~u| ≤
CSp

2

h
‖ν‖L∞ ~u

Tdiag(M)−1/2Mdiag(M)−1/2~u ≤ CΥp2

h
~uT~u389

390

where Υ is the upper bound arising in Theorem 2.1. Consequently, using the fact391

that ρ(A) =‖A‖ for A a normal matrix where ρ(·) is the spectral radius of a matrix,392

we have393 ∥∥∥B̃∥∥∥ ≤‖MS‖+ ∆t‖CS‖ = ρ(MS) + ∆tρ(CS) ≤ Υ(1 + C∆tp2/h)394
395

and λmin(B̃ + B̃T ) ≥ 2τ where τ is the lower bound arising in Theorem 2.1. Finally,396

Elman [7,11] gives the following bound for the convergence of GMRES for the matrix397

B̃,398

‖~rk‖ ≤ sink(β)‖~r0‖399400
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14 M. AINSWORTH, AND S. JIANG

Table 3
Iteration count of using GMRES to solve the preconditioned system B̃ and unpreconditioned

system B. Using the preconditioner greatly reduces the iteration count in all cases.

p ∆t = 0.001 ∆t = 0.01 ∆t = 0.1

B̃ B B̃ B B̃ B
4 20 107 22 104 100 365
5 28 285 22 243 186 1438
6 25 855 37 611 213 6699
7 24 2380 41 1798 269 26573
8 31 4582 58 3060 286 99102
9 27 15129 60 8154 457 > 99999

where cos(β) = λmin((B̃+B̃T )/2)

‖B̃‖ ≥ τ
Υ

1
1+C∆tp2/h which, in view of the uniform lower401

bound on τ
Υ , shows that using the diagonal preconditioner will give results similar402

to what one expects were the full mass matrix to be used as a preconditioner for B.403

We display the number of iterations needed for GMRES to converge when solving the404

matrices B̃ and B with ν = (1, 1, 1) on a cube with 132 elements in Table 3. Observe405

that preconditioning with the diagonal of the mass matrix proves to be quite effective406

in reducing iteration count in all cases, even when ∆t is relatively large.407

3.5. Applicability to Other Types of Basis. The discussion thus far might408

leave the reader with the (false) impression that our preconditioner is only applicable409

provided one uses the basis presented in subsection 2.1. This is not the case. The410

preconditioner is applicable to any choice of basis. Indeed, our preconditioner can be411

regarded as defining an abstract Additive Schwarz method (ASM) [8,36] as follows:412

The ASM is defined by the following subspace decomposition413

X = XI ⊕
4⊕
k=1

XFk ⊕
6⊕
k=1

XEk ⊕
4⊕
k=1

XVk ,414

415

in conjunction with an exact solver on each subspace. Specifically, given a residual416

f ∈ X, the action of the ASM is defined as follows:417

• uI ∈ XI : (uI , vI) = (f, vI) ∀vI ∈ XI ,418

• uFk ∈ XFk : (uFk , vFk) = (f, vFk) ∀vFk ∈ XFk ,419

• uEk ∈ XEk : (uEk , vEk) = (f, vEk) ∀vEk ∈ XEk ,420

• uVk ∈ XVk : (uVk , vVk) = (f, vVk) ∀vVk ∈ XVk ,421

and returns u := uI +
∑4
k=1 uFk +

∑6
k=1 uEk +

∑4
k=1 uVk . This formulation of the422

preconditioner relies only on the choice of space, and not on the particular basis. The423

proof that the ASM gives rise to an uniform bound on the condition number follows424

from the fact that the constants c, C in (2.9) are independent of p [36, Theorem 2.7].425

The action of the preconditioner for a general choice of basis consists of first426

statically condensing out the interior degrees of freedom. Lemma 4.3 states that XI427

is L2 orthogonal to the remaining subspaces:428

XI ⊥
4⊕
k=1

XFk ⊕
6⊕
k=1

XEk ⊕
4⊕
k=1

XVk429

430

which means that one can first reduce the system to the Schur complement matrix.431

Once the Schur complement is in hand, a change of basis can be applied on the in-432

terface to map to the spaces XFk , XEk and XVk corresponding to the preconditioner433
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presented here. Specific details in the 2D setting can be found in [5]. The same ap-434

proach extends readily to tetrahedral elements considered here; most of the numerical435

examples of section 3 were computed using the Bernstein basis in conjunction with a436

change of basis operator.437

4. Technical Lemmas. In this section, we turn to the proof of the technical438

lemmas which were used in proving Theorem 2.1.439

4.1. Orthogonality. The Duffy transformation [18, §3.2] given by440

ξ :=
2λ2

1− λ3 − λ4
− 1, η :=

2λ3

1− λ4
− 1, θ := 2λ4 − 1441

442

maps the tetrahedron T onto the cube {(ξ, η, θ) : −1 ≤ ξ, η, θ ≤ 1}. For reference,443

the edge E1 = {(ξ, η, θ) : −1 ≤ ξ ≤ 1, η = −1, θ = −1} and the face F1 = {(ξ, η, θ) :444

−1 ≤ ξ, η ≤ 1, θ = −1}.445

We begin by establishing the orthogonality properties of the basis functions:446

Lemma 4.1. The functions {ωijk}, {ψ(k)
ij }, {χ

(k)
i } provide an L2-orthogonal basis447

for XI , XFk , XEk respectively.448

Proof. It suffices to show that449

(ωi1j1k1 , ωi2j2k2) ∝ δi1j1k1,i2j2k2 , (ψ
(1)
i1j1

, ψ
(1)
i2j2

) ∝ δi1j1,i2j2 , (χ
(1)
i1
, χ

(1)
i2

) ∝ δi1,i2 .450
451

Transforming the basis functions using the Duffy transformation gives452

ωijk =
1− ξ

2

1 + ξ

2
P

(2,2)
i (ξ)

(
1− η

2

)i+2
1 + η

2
P

(2i+5,2)
j (η)453

×
(

1− θ
2

)i+j+3
1 + θ

2
P

(2i+2j+8,2)
k (θ),454

ψ
(1)
ij =

1− ξ
2

1 + ξ

2
P

(2,2)
i (ξ)

(
1− η

2

)i+2
1 + η

2
P

(2i+5,2)
j (η)455

×
(

1− θ
2

)i+j+3

Φ
(2i+2j+8)
p−3−i−j (θ),456

χ
(1)
i =

1− ξ
2

1 + ξ

2
P

(2,2)
i (ξ)

(
1− η

2

)i+2(
1− θ

2

)i+2

F (η, θ)457
458

where F (η, θ) is a polynomial in η and θ.459

The Jacobian of the Duffy transformation is given by460

J =
1− η

2

(
1− θ

2

)2

,461
462

and, as a consequence, we find463 ∫
T

ωi1j1k1ωi2j2k2 dx =

∫ 1

−1

(
1− ξ

2

)2(
1 + ξ

2

)2

P
(2,2)
i1

P
(2,2)
i2

dξ464

×
∫ 1

−1

(
1− η

2

)i1+i2+5(
1 + η

2

)2

P
(2i1+5,2)
j1

P
(2i2+5,2)
j2

dη465

×
∫ 1

−1

(
1− θ

2

)i1+i2+j1+j2+8(
1 + θ

2

)2

P
(2i1+2j1+8,2)
k1

P
(2i2+2j2+8,2)
k2

dθ466

= Cδi1,i2δj1,j2δk1,k2 .467468
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16 M. AINSWORTH, AND S. JIANG

The result for the edge ψ
(1)
ij and face χ

(1)
i functions follows the same lines.469

The next lemma enumerates the pertinent properties of the function Φ
(m)
p which470

was used in several places in defining the basis functions:471

Lemma 4.2. For non-negative integers m, q, Φ
(m)
p has the following properties:472

1. Φ
(m)
q (−1) = 1,473

2. Weighted norm474

Im,q :=

∫ 1

−1

(
1− x

2

)m (
Φ(m)
q (x)

)2

dx =
2

(q + 1)(m+ q + 1)
,(4.1)475

476

3. Orthogonality property477

∫ 1

−1

(
1− x

2

)m
1 + x

2
Φ(m)
q (x)w(x) dx = 0478

479

for all w ∈ Pr([−1, 1]) with r < q.480

Proof. The first property comes from the fact that P
(m,1)
q (−1) = (−1)q

(
q+1
q

)
[1,481

§22.2.1], and the third property follows straight from the orthogonality property of482

P
(m,1)
q . For the second result, relation (22.7.19) in [1] gives us483

2q +m+ 1

q +m+ 1
P (m,0)
q − q +m

q +m+ 1
P

(m,1)
q−1 = P (m,1)

q .484
485

Equation (4.1) in the case of q = 0 trivially holds. Suppose that (4.1) holds in the486

case of q − 1, then487

Im,q =
1

(q + 1)2

∫ 1

−1

(
1− x

2

)m
P (m,1)
q (x)P (m,1)

q (x) dx488

=
1

(q + 1)2

∫ 1

−1

(
1− x

2

)m(
(2q +m+ 1)2

(q +m+ 1)2
P (m,0)
q (x)P (m,0)

q (x)

)
dx489

+
1

(q + 1)2

(q +m)2

(q +m+ 1)2
q2Im,q−1490

=
1

(q + 1)2

(2q +m+ 1)2

(q +m+ 1)2

2

2q +m+ 1
+

1

(q + 1)2

(q +m)2

(q +m+ 1)2
q2 2

q(m+ q)
491

=
2

(q + 1)(q +m+ 1)
492
493

and the result (4.1) holds by induction.494

The above result implies that the interior basis functions are orthogonal to the495

face/edge/vertex functions:496

Lemma 4.3. Let XB =
⊕4

k=1XFk ⊕
⊕6

k=1XEk ⊕
⊕4

k=1XVk , then the space X497

can be decomposed as X = XI ⊕XB such that XI ⊥ XB.498
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Proof. Recall Ξi, qi and q from (2.2)–(2.4) respectively, and define χ̄
(1)
i , ϕ̄1 as499

χ̄
(1)
i := λ1λ2Ξi(λ1, λ2)qi(λ3, λ4)

=
1− ξ

2

1 + ξ

2
P

(2,2)
i (ξ)

(
1− η

2

)i+2

Φ
(2i+5)
j (η)

(
1− θ

2

)i+j+2

Φ
(2i+2j+6)
p−2−i−j (θ),

ϕ̄1 := λ1q(λ2, λ3, λ4)

=
1− ξ

2
Φ

(2)
i (ξ)

(
1− η

2

)i+1

Φ
(2i+3)
j (η)

(
1− θ

2

)i+j+1

Φ
(2i+2j+4)
p−1−i−j (θ).

(4.2)

500

501

By permutation of the barycentric coordinates, it suffices to show that for any502

interior basis function ωlmn with 0 ≤ l,m, n, l + m + n ≤ p − 4, the inner product503

vanishes504

(ϕ̄1, ωlmn) = 0,505

(χ̄
(1)
i , ωlmn) = 0, i = 0, . . . , p− 2,506

(ψ
(1)
ij , ωlmn) = 0, 0 ≤ i, j, i+ j ≤ p− 3.507

508

Calculating the inner-product for the face functions first:509

(ψ
(1)
ij , ωlmn) =

∫ 1

−1

(
1− ξ

2

)2(
1 + ξ

2

)2

P
(2,2)
i (ξ)P

(2,2)
l (ξ) dξ510

×
∫ 1

−1

(
1− η

2

)i+l+5(
1 + η

2

)2

P
(2i+5,2)
j (η)P (2l+5,2)

m (η) dη511

×
∫ 1

−1

(
1− θ

2

)i+l+j+m+8(
1 + θ

2

)
Φ

(2i+2j+8)
p−3−i−j (θ)P (2l+2m+8,2)

n (θ) dθ512

∝ δilδjm
∫ 1

−1

(
1− θ

2

)2i+2j+8(
1 + θ

2

)
Φ

(2i+2j+8)
p−3−i−j (θ)P (2l+2m+8,2)

n (θ) dθ.513
514

The inner-product vanishes if i 6= l, j 6= m. Assuming otherwise, then we have that515

p− 3− i− j > n as l +m+ n ≤ p− 4, hence the inner-product is 0 by Lemma 4.2.516

For the edges, we have517

(χ̄
(1)
i , ωlmn) ∝ δil

∫ 1

−1

(
1− η

2

)i+l+5
1 + η

2
P

(2i+5,1)
j (η)P (2l+5,2)

m (η) dη518

×
∫ 1

−1

(
1− θ

2

)i+j+l+m+7
1 + θ

2
P

(2i+2j+6,1)
p−2−i−j (θ)P (2l+2m+8,2)

n (θ) dθ.519
520

The inner product is trivially zero if i 6= l or m < j. Assuming otherwise, we have for521

the θ variable522 ∫ 1

−1

(
1− θ

2

)2i+2j+6
1 + θ

2

[(
1− θ

2

)1+m−j

P (2l+2m+8,2)
n (θ)

]
P

(2i+2j+6,1)
p−2−i−j (θ) dθ.523

524

The above vanishes if525

1 +m− j + n < p− 2− i− j526527
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which follows from the fact that l +m+ n ≤ p− 4.528

Finally, we have529

(ϕ̄1, ωlmn) ∝
∫ 1

−1

(
1− ξ

2

)2
1 + ξ

2
P

(2,1)
i (ξ)P

(2,2)
l (ξ) dξ530 ∫ 1

−1

(
1− η

2

)i+l+4
1 + η

2
P

(2i+3,1)
j (η)P (2l+5,2)

m (η) dη531 ∫ 1

−1

(
1− θ

2

)i+j+l+m+6
1 + θ

2
P

(2i+2j+4,1)
k (θ)P

(2l+2m+8,2)
l (θ) dθ.532

533

If i > l, then there is nothing to prove, otherwise the η integral can be written as534 ∫ 1

−1

(
1− η

2

)2i+3
1 + η

2

[(
1− η

2

)1+l−i

P (2l+5,2)
m (η)

]
P

(2i+3,1)
j (η) dη535

536

which vanishes if j > 1 + l − i + m. Finally, assuming otherwise, the θ integral can537

be written as538 ∫ 1

−1

(
1− θ

2

)2i+2j+4
1 + θ

2

[(
1− θ

2

)l+m−i−j+2

P (2l+2m+8,2)
n (θ)

]
P

(2i+2j+4,1)
p−1−i−j (θ) dθ.539

540

The above quantity vanishes if541

l +m− i− j + 2 + n < p− 1− i− j542543

which follows from the fact that l +m+ n ≤ p− 4.544

Now we turn to the stability of the subspace decomposition.545

4.2. Vertex Contributions. The following lemma corresponds to Lemma 5.4546

and 6.1 of [4] and allows us to bound the vertex contribution:547

Lemma 4.4. The vertex basis functions of degree p satisfy the bound548

cp−3 ≤‖ϕ‖ ≤ Cp−3
549550

for constants c, C independent of p.551

Proof. Note that552

‖ϕ1‖ =
∥∥ϕ̄1/3 + λ1q(λ3, λ4, λ2)/3 + λ1q(λ4, λ2, λ3)/3

∥∥553

≤
∥∥ϕ̄1/3

∥∥+
∥∥λ1q(λ3, λ4, λ2)/3

∥∥+
∥∥λ1q(λ4, λ2, λ3)/3

∥∥ =‖ϕ̄1‖554555

where ϕ̄1 is defined in (4.2).556

Using Lemma 4.2,557

‖ϕ̄‖2 =

∫ 1

−1

(1− ξ)2

4
Φ

(2)
i dξ

∫ 1

−1

(
1− η

2

)2i+3

Φ
(2i+3)
j dη558

×
∫ 1

−1

(
1− θ

2

)2i+2j+4

Φ
(2i+2j+4)
p−1−i−j dθ559

=
8

(i+ 1)(i+ 3)(j + 1)(2i+ j + 4)(p− i− j)(i+ j + p+ 4)
≤ Cp−6.560

561
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For the lower bound, let 0 ≤ i, j, k, i+ j + k ≤ p and define562

Ψijk := cijkP
(0,0)
i (ξ)

(
1− η

2

)i
P

(2i+1,0)
j (η)

(
1− θ

2

)i+j
P

(2i+2j+2,0)
k (θ),(4.3)563

564

where cijk = 1
2

√
(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3). These functions form an or-565

thonormal basis for X hence ϕ can be written in the form ϕ =
∑
i+j+k≤p uijkΨijk566

where uijk are the appropriate coefficients and ‖ϕ‖2 =
∑
i+j+k≤p u

2
ijk. It suffices to567

prove the inequality in the case of ϕ1. Cauchy-Schwarz gives568

1 = |ϕ(−1,−1,−1)|2 =

 ∑
i+j+k≤p

(−1)i+j+kcijkuijk

2

569

≤
∑

i+j+k≤p

u2
ij

∑
i+j+k≤p

c2ijk =
(p+ 1)2(p+ 2)2(p+ 3)2

48
‖ϕ‖2 .570

571

We now proceed to the edge contributions.572

4.3. Edge contributions. The following lemma bounds the contribution on an573

edge:574

Lemma 4.5. Let u ∈ X be such that u vanishes at the vertices of T . Let γ be575

an arbitrary edge of T and let U ∈ XEγ such that U |γ = u|γ . Then there exists a576

constant C independent of p such that577

‖U‖ ≤ C‖u‖ .(4.4)578579

Proof. Without loss of generality, we assume that γ := E1. Let U =
∑p−2
i=0 wiχ

(1)
i580

where the coefficients wi are chosen such that U |γ = u|γ . It is more convenient to581

work with the function χ̄
(1)
i defined in (4.2). Observe that χ̄

(1)
i |E1

= χ
(1)
i |E1

, and582

(χ̄
(1)
i , χ̄

(1)
j ) ∝ δij . Let Ū =

∑p−2
i=0 wiχ̄

(1)
i , then Ū = U on edge γ and ‖U‖ ≤

∥∥Ū∥∥ as583 ∥∥∥χ(1)
i

∥∥∥ =
∥∥∥χ̄(1)

i /2 + λ1λ2Ξi(λ1, λ2)qj(λ4, λ3)/2
∥∥∥584

≤
∥∥∥χ̄(1)

i /2
∥∥∥+

∥∥λ1λ2Ξi(λ1, λ2)qj(λ4, λ3)/2
∥∥ =

∥∥∥χ̄(1)
i

∥∥∥ ,585
586

thus it suffices to show that
∥∥Ū∥∥ ≤ C‖u‖.587

To this end, recall the orthonormal basis Ψijk defined in (4.3) and let u =588 ∑
i+j+k≤p uijkΨijk and589

f := u|γ =

p∑
i=0

viP
(0,0)
i (x)590

591

where592

vi :=

p−i∑
j=0

p−i−j∑
k=0

(−1)j+k

2
uijk

√
(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3),(4.5)593

594

Furthermore, since u vanishes at the vertices of T , then f(±1) = 0 thus595

p∑
i=0,even

vi = 0,

p∑
i=1,odd

vi = 0.(4.6)596

597
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Consequently, we can rewrite f =
∑p
i=2(P

(0,0)
i − P (0,0)

i−2 )Si where598

Si = vi + vi+2 + · · ·+

{
vp

vp−1

=

{
−v0 − · · · − vi−2 if i even

−v1 − · · · − vi−2 else
599

600

depending on the parity.601

Turning to the coefficients wi, we must have on edge γ602

Ū |γ =
1− ξ

2

1 + ξ

2

p−2∑
i=0

wiP
(2,2)
i (ξ) =

p∑
i=2

(P
(0,0)
i − P (0,0)

i−2 )Si603

604

Recall the following identity from Lemma 6.6 of [4]605

− 1− x2

2(n− 1)

(
(n+ 1)(n+ 2)

2n
P

(2,2)
n−2 −

n− 1

2
P

(2,2)
n−4

)
= P (0,0)

n − P (0,0)
n−2 , n ≥ 2606

607

where Pn−4 is understood to be 0 for n < 4, then we have608

p−2∑
i=0

wiP
(2,2)
i =

p∑
i=2

(
− (i+ 1)(i+ 2)

i(i− 1)
P

(2,2)
i−2 + P

(2,2)
i−4

)
Si609

610

and we deduce by matching coefficients that611

wi = Si+4 −
(i+ 3)(i+ 4)

(i+ 1)(i+ 2)
Si+2

= −vi+2 −
2(5 + 2i)

(i+ 1)(i+ 2)
Si+2.

(4.7)612

613

With (4.7) in hand, we can now analyze
∥∥Ū∥∥ and ‖u‖. The Cauchy-Schwarz614

inequality applied to (4.5) gives615

v2
i ≤

p−i∑
j=0

p−i−j∑
k=0

u2
ijk

p−i∑
j=0

p−i−j∑
k=0

(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3)

4
616

=
1

16
(2i+ 1)(i− p− 2)(i− p− 1)(i+ p+ 2)(i+ p+ 3)

p−i∑
j=0

p−i−j∑
k=0

u2
ijk,617

618

hence, rearranging and summing over the index i, we have a lower bound for ‖u‖619

p∑
i=0

16v2
i

(2i+ 1)(i− p− 2)(i− p− 1)(i+ p+ 2)(i+ p+ 3)

≈
p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2
≤‖u‖2 .

(4.8)620

621
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Using Lemma 4.2, the fact that j = bp−i−2
2 c, and Cauchy-Schwarz on (4.7) gives622

∥∥Ū∥∥2
=

p−2∑
i=0

2(i+ 1)(i+ 2)w2
i

(i+ 3)(i+ 4)(2i+ 5)

2

(j + 1)(2i+ j + 6)

2

(p− i− j − 1)(i+ j + p+ 5)
623

≈
p−2∑
i=0

w2
i

(i+ 1)

1

(p− i+ 1)(p+ i+ 1)

1

(p− i+ 1)(i+ p+ 1)
624

≤ C

p−2∑
i=0

v2
i+2

(i+ 1)(p− i+ 1)2(p+ i+ 1)2
+

S2
i+2

(i+ 1)3(p− i+ 1)2(p+ i+ 1)2

 .625

626

The first term is bounded easily by using (4.8)627

p−2∑
i=0

v2
i+2

(i+ 1)(p− i+ 1)2(p+ i+ 1)2
≤ C

p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2
≤ C‖u‖2 .628

629

Hence, the theorem follows if there exists a constant C independent of p such that630

p−2∑
i=0

S2
i+2

(i+ 1)3(p− i+ 1)2(p+ i+ 1)2
≤ C

p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2
,631

632

but this follows by applying Lemma 4.10 with j = 2.633

4.4. Face contributions. Finally, it remains to show that the face contributions634

are bounded. Let F be an arbitrary face of T , and let S be a subset of the remaining635

faces of T . We remark that S ∪ F need not necessarily coincide with the set of all636

faces of T . Let YF := {u ∈ X : u = 0 on all the edges of F}, and define the operator637

ES,F : YF 7→ YF by638

ES,Fu := argmin
v|F=u|F
v|S=0
v∈YF

‖v‖2 .(4.9)639

640

Existence to the minimization problem is trivial, while uniqueness comes from the641

strict convexity of the squared L2 norm. Clearly,642 ∥∥∥ES\F ′,Fu∥∥∥ ≤∥∥ES,Fu∥∥ , ∀F ′ ⊂ S643
644

since ES,Fu = u on F and also vanishes on S \ F ′. The proof that the converse645

inequality is also independent of p is less obvious:646

Lemma 4.6. Let F be an arbitrary face of T , and let S be a subset of the remaining647

faces of T . There exists a constant C independent of p such that648 ∥∥ES,Fu∥∥ ≤ C∥∥∥ES\F ′,Fu∥∥∥ , ∀u ∈ YF ,649
650

for all F ′ ⊂ S.651

Before giving the proof, we note the following consequence of Lemma 4.6 which was652

used in the proof of Theorem 2.1:653

This manuscript is for review purposes only.



22 M. AINSWORTH, AND S. JIANG

Corollary 4.7. Let Fi be any face of T and u ∈ YFi , then there exists a poly-654

nomial U ∈ XFi such that U |Fi = u|Fi and655

‖U‖ ≤ C‖u‖656657

where C is independent of p.658

Proof. Choosing S = ∂T \ Fi, F ′ = S, and let U = ES,Fiu. Clearly, U ∈ XFi as659

U vanishes on S the three remaining faces. Furthermore, Lemma 4.6 gives the bound660

‖U‖ =
∥∥ES,Fiu∥∥ ≤ C∥∥∥ES\F ′,Fiu∥∥∥ ≤ C‖u‖ .661

662

All that remains is to prove Lemma 4.6; to this end, for l,m, n ∈ {0, 1} define the663

polynomials664

ζ
(l,m,n)
ij =

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n(
1 + η

2

)l
× P (2i+2m+2n+1,2l)

j (η)

(
1− θ

2

)j+i+m+n+l

Φ
(2(j+i+m+n+l)+2)
p−i−j−m−n−l (θ)

(4.10)665

666

with 0 ≤ i, j, i+ j ≤ p− l −m− n.667

Lemma 4.8. The following properties hold:668

1. ζ
(l,m,n)
ij ∈ X,669

2. ζ
(1,1,1)
ij vanishes on {ξ = ±1, η = 1}, ζ(0,1,1)

ij vanishes on {ξ = ±1} etc.,670

3. ζ
(1,1,1)
ij = ψ

(1)
ij , our face basis functions,671

4. {ζ(l,m,n)
ij } is orthogonal on T for a fixed l,m, n,672

5. {ζ(l,m,n)
ij |F1

} spans Pp(F1) ∩H1
0 (F1).673

Proof. The first three statements can be deduced by inspection. For the orthog-674

onality property, we note that675

(ζ
(l,m,n)
i1j1

, ζ
(l,m,n)
i2j2

) ∝ F (θ)

∫ 1

−1

(
1− ξ

2

)2m(
1 + ξ

2

)2n

P
(2m,2n)
i1

P
(2m,2n)
i2

dξ676

×
∫ 1

−1

(
1− η

2

)i1+i2+2m+2n+1(
1 + η

2

)2l

P
(2i1+2m+2n+1,2l)
j1

P
(2i2+2m+2n+1,2l)
j2

dη.677
678

The quantity vanishes if i1 6= i2 or j1 6= j2.679

The last statement follows from linear independence, and recognizing that the680

restriction of the 3D Duffy transformation onto F1 reduces to the 2D Duffy transfor-681

mation.682

The following lemma gives an explicit expression for the operator ES,F defined in683

(4.9):684

Lemma 4.9. Let u ∈ YF1
then685

ES,F1u =
∑

i+j≤p−l−m−n

u
(l,m,n)
ij ζ

(l,m,n)
ij(4.11)686

687

where u
(l,m,n)
ij are determined by the condition688 ∑

i+j≤p−l−m−n

u
(l,m,n)
ij ζ

(l,m,n)
ij (ξ, η,−1) = u(ξ, η,−1)(4.12)689

690
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and the coefficients l,m, n are given by one of the following conditions depending on691

S:692

1. S = {ξ = −1} ∪ {ξ = 1} ∪ {η = −1}, m = n = l = 1.693

2. S = {ξ = −1} ∪ {ξ = 1}, m = n = 1, l = 0.694

3. S = {ξ = −1} ∪ {η = −1}, m = 1, n = 0, l = 1.695

4. S = {ξ = 1} ∪ {η = −1}, m = 0, n = l = 1.696

5. S = {ξ = −1}, m = 1, n = l = 0.697

6. S = {η = −1}, m = n = 0, l = 1.698

7. S = {ξ = 1}, m = 0, n = 1, l = 0.699

8. S = ∅, m = n = l = 0.700

Proof. Clearly, the coefficients u
(l,m,n)
ij are uniquely defined by (4.12) thanks to701

properties 4 and 5 of Lemma 4.8. For the sake of notation, we will drop the (l,m, n)702

notation in the remainder of the proof. It suffices to show that the right hand side of703

(4.11) solves the minimization problem (4.9).704

By statement 4 of Lemma 4.8, and statement 2 of Lemma 4.2, we can calculate705

∥∥∥∥∥∥
∑

i+j≤p−l−m−n

uijζij

∥∥∥∥∥∥
2

=
∑

i+j≤p−l−m−n

u2
ij

∥∥ζij∥∥2

=
∑

i+j≤p−l−m−n

u2
ijµiνj

2

(p− i− j −m− n− l + 1)(p+ i+ j +m+ n+ l + 3)

(4.13)

706

707

where708

µi =

∫ (
1− x

2

)2m(
1 + x

2

)2n

(P
(2m,2n)
i )2 dx709

νj =

∫ (
1− x

2

)2i+2m+2n+1(
1 + x

2

)2l

(P
(2i+2m+2n+1,2l)
j )2 dx.710

711

We will show below that
∥∥ES,F1

u
∥∥2

equals the above quantity (4.13).712

For i+ j + k ≤ p− l −m− n, let713

Ψijk :=

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n(
1 + η

2

)l
× P (2i+2m+2n+1,2l)

j (η)

(
1− θ

2

)i+m+n+l+j

P
(2(i+m+n+l+j)+2,0)
k (θ).

714

715

By construction, Ψijk vanish on S and are orthogonal to each other, hence there exists716

coefficients ũijk such that ES,F1
u =

∑
i+j+k≤p−m−n−l ũijkΨijk with717 ∥∥ES,F1

u
∥∥2

=
∑

i+j+k≤p−m−n−l

ũ2
ijkµiνjρk718

719

where720

ρk =

∫ (
1− x

2

)2(i+m+n+l+j)+2

(P
(2(i+m+n+l+j)+2,0)
k )2 dx.721

722
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We now turn to the relationship between uij and ũijk. First, note that ζij |F1
=723

Ψijk|F1
hence in order to satisfy the constraint on F1, we must have

∑
uijζij |F1

=724 ∑
ũijkΨijk|F1

and thus725

uij =

p−i−j−m−n−l∑
k=0

ũijkP
(2(i+m+n+l+j)+2,0)
k (−1) =

p−i−j−m−n−l∑
k=0

(−1)kũijk.(4.14)726

727

By Cauchy-Schwarz inequality, we have that728

u2
ij ≤

p−i−j−m−n−l∑
k=0

ũ2
ijkρk

p−i−j−m−n−l∑
k=0

ρ−1
k(4.15)729

730

which implies a lower bound for the norm of the extension in terms of uij731

(4.16)

∥∥ES,F1
u
∥∥2

=
∑

i+j+k≤p−m−n−l

ũ2
ijkµiνjρk

≥
p−m−n−l∑

i=0

µi

p−m−n−l−i∑
j=0

νj
u2
ij∑p−i−j−m−n−l

k=0 ρ−1
k

.

732

In fact, equality can be achieved in (4.15) if we let733

ũijk = (−1)kρ−1
k

(
uij∑p−i−j−m−n−l

k=0 ρ−1
k

)
.734

735

One can verify that with this choice of coefficients that (4.14) is still satisfied. As736

ρk = 2
2(i+j+l+m+n)+2k+3 , thus737

p−i−j−m−n−l∑
k=0

ρ−1
k =

1

2
(p− i− j − l −m− n+ 1)(i+ j + l +m+ n+ p+ 3).738

739

Comparing (4.16) with (4.13), we see that they are indeed equal.740

Finally we are in a position to give the proof of Lemma 4.6:741

Proof. We first prove the case where F ′ consists of a single face. Without loss742

of generality, we can assume that F = F1 = {θ = −1} the reference face, and743

F ′ = {η = −1}. There are three cases corresponding to S \F ′ consisting of the empty744

set, a single face or two faces:745

Case 1. If S = F ′, we choose m = n = 0.746

Case 2. If S \ F ′ is a single face, we choose m = 0, n = 1 or m = 1, n = 0.747

Case 3. If S \ F ′ consists of the two remaining faces, we choose m = n = 1.748

Let α, β ∈ X be749

α :=
∑

i+j≤p−1−m−n

αijζ
(1,m,n)
ij , β :=

∑
i+j≤p−m−n

βijζ
(0,m,n)
ij750

751

with coefficients αij , βij such that α and β coincides with u on face F1 (i.e. u|F1
=752

α(ξ, η,−1) = β(ξ, η,−1)). Lemma 4.9 implies that753

α = ES,F1u, β = ES\F ′,F1
u,754755
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and it suffices to show that there exists a C independent of p such that ‖α‖ ≤ C‖β‖.756

Using orthogonality of the basis functions and Lemma 4.2 gives757

‖α‖2 =
∑

i+j≤p−1−m−n

2(i+ 2m)!(i+ 2n)!α2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× (j + 1)(j + 2)

(i+ j +m+ n+ 2)(2i+ j + 2m+ 2n+ 3)(2i+ j + 2(m+ n+ 1))

× 2

(p− i− j −m− n)(i+ j +m+ n+ p+ 4)

≈
∑

i+j≤p−1−m−n

2(i+ 2m)!(i+ 2n)!α2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× (j + 1)2

(i+ j + 1)3

1

(p− i− j)(i+ j + p)

(4.17)758

759

and760

‖β‖2 =
∑

i+j≤p−m−n

2(i+ 2m)!(i+ 2n)!β2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× 1

i+ j +m+ n+ 1

2

(p− i− j −m− n+ 1)(i+ j +m+ n+ p+ 3)

≈
∑

i+j≤p−m−n

2(i+ 2m)!(i+ 2n)!β2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× 1

i+ j + 1

1

(p− i− j + 1)(i+ j + p)
.

(4.18)761

762

We thus have to show for all 0 ≤ i ≤ p−m− n− 1 that763

p−1−m−n−i∑
j=0

(j + 1)2α2
ij

(i+ j + 1)3

1

(p− i− j)(i+ j + p)

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1

1

(p− i− j + 1)(i+ j + p)
.

(4.19)764

765

Now, we turn to the relationship between the coefficients αij and βij . First, note766

that since u ∈ YF1
, it vanishes on the edges of F1; in particular u|F1∩{η=−1} = 0. We767

have α|F1∩{η=−1} = 0 as ζ
(1,m,n)
ij vanishes on η = −1, but the basis functions of β768

does not vanishes trivially on η = −1. We see that769

β|F1∩{η=−1} =
∑

i+j≤p−m−n

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)(−1)jβij770

=

p−m−n∑
i=0

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

p−m−n−i∑
j=0

(−1)jβij ,771

772

hence by linear independence,773

p−m−n−i∑
j=0

(−1)jβij = 0(4.20)774

775
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in order for β|F1∩{η=−1} to vanish.776

Now returning to the face F1, let γ = 2i+ 2m+ 2n+ 1, then777

α|F1 =

p−1−m−n∑
i=0

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n

778

×
p−1−m−n−i∑

j=0

(
1 + η

2

)
P

(γ,2)
j (η)αij779

780

By (4.20), βp−m−n,0 = 0 hence781

β|F1
=

p−m−n∑
i=0

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n p−m−n−i∑
j=0

P
(γ,0)
j (η)βij782

=

p−m−n−1∑
i=0

(
1− ξ

2

)m(
1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n p−m−n−i∑
j=0

P
(γ,0)
j (η)βij .783

784

As α|F1
= β|F1

, then we must have that for a fixed 0 ≤ i ≤ p− 1−m− n785

p−m−n−i−1∑
j=0

αij

(
1 + η

2

)
P

(γ,2)
j (η) =

p−m−n−i∑
j=0

βijP
(γ,0)
j (η).786

787

By telescoping the sum, we have788

p−m−n−i∑
j=0

βijP
(γ,0)
j (η) =

p−m−n−i∑
j=0

Sij(P
(γ,0)
j+1 (η) + P

(γ,0)
j (η))(4.21)789

790

where Sij =
∑j
k=0(−1)k+jβik with Si,p−m−n−i = 0 due to (4.20).791

Combining (22.7.16) and (22.7.19) of [1] gives the following relation792

P
(γ,0)
j+1 (x) + P

(γ,0)
j (x) =

x+ 1

2

(
(γ + j)

j + 1
P

(γ,2)
j−1 (x) +

γ + j + 2

j + 1
P

(γ,2)
j (x)

)
(4.22)793

794

for non-negative j where we assume that P
(γ,2)
−1 = 0. Hence, substituting (4.22) into795

(4.21), we have796

p−m−n−i∑
j=0

βijP
(γ,0)
j (η) =

p−m−n−i∑
j=0

Sij
η + 1

2

(
(γ + j)

j + 1
P

(γ,2)
j−1 (η) +

γ + j + 2

j + 1
P

(γ,2)
j (η)

)
.797

798

Matching coefficients, we have that799

αij =
γ + j + 2

j + 1
Sij +

γ + j + 1

j + 2
Si,j+1 =

γ + j + 1

j + 2
βi,j+1 +

γ + 2j + 3

(j + 1)(j + 2)
Sij .800

801

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we have that802

α2
ij ≤ 2

(
γ + j + 1

j + 2

)2

β2
i,j+1 + 2

(
γ + 2j + 3

(j + 1)(j + 2)

)2

S2
ij .803

804
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Inserting the above into (4.19), it suffices to show that there exists a constant C805

independent of p and i such that806

p−1−m−n−i∑
j=0

(j + 1)2
(
γ+j+1
j+2

)2

(i+ j + 1)3

β2
i,j+1

(p− i− j)(i+ j + p)
807

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1

1

(p− i− j + 1)(i+ j + p)
.808

809

and810

p−1−m−n−i∑
j=0

(j + 1)2
(

γ+2j+3
(j+1)(j+2)

)2

(i+ j + 1)3

S2
ij

(p− i− j)(i+ j + p)
811

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1

1

(p− i− j + 1)(i+ j + p)
.812

813

For the first expression, we note that γ + j + 1 ≈ i + j + 1 hence the inequality814

follows trivially. As for the second expression, we note that815

γ + 2j + 3

(j + 1)(j + 2)
≈ i+ j + 1

(j + 1)2
816
817

Hence, we wish to show that818

p−1−m−n−i∑
j=0

S2
ij

(j + 1)2(i+ j + 1)

1

(p− i− j)(i+ j + p)
819

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1

1

(p− i− j + 1)(i+ j + p)
.820

821

By Corollary 4.11, there exists a C independent of p and i, and we are done with the822

case of F ′ consisting of a single face.823

In the case where F ′ consists of two or three faces, we can simply bootstrap the824

argument. For example, if F ′ = F ′1 ∪ F ′2 where F ′1, F
′
2 are two distinct faces, then825 ∥∥ES,Fu∥∥ ≤ C∥∥∥ES\F ′1,Fu∥∥∥ ≤ C∥∥∥ES\(F ′1∪F ′2),Fu
∥∥∥ = C

∥∥∥ES\F ′,Fu∥∥∥ .826
827

4.5. Hardy Inequalities. It remains to prove the Hardy inequalities used.828

Lemma 4.10. Let {vi}pi=0 ∈ R satisfy829

p∑
i=0

vi = 0,(4.23)830

831

then for j a positive integer, there exists a constant C(j) independent of p such that832

p∑
i=0

S2
i

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j
≤ C

p∑
i=0

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j
833

834

where Si =
∑i
k=0 vk.835
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Proof. By (4.23), we have that Si = −
∑p
k=i+1 vk, our inequality follows if836

p/2∑
i=0

(∑i
k=0 vk

)2

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j
≤ C

p/2∑
i=0

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j
(4.24)837

838

and839

p∑
i=p/2+1

(
−
∑p
k=i+1 vk

)2

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j
≤ C

p∑
i=p/2+1

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j

(4.25)

840

841

both hold with the constant C independent of p.842

Hardy’s inequality for weighted sums states that for non-negative ak, bi, ci,843

∞∑
i=0

 i∑
k=0

ak

2

bi ≤ C
∞∑
i=0

a2
i ci(4.26)844

845

with C ≤ 2
√

2A where A := supn∈N
(∑∞

i=n bi
)1/2 (∑n

i=0 c
−1
i

)1/2

<∞ [19, p. 57]. For846

(4.24) our result follows if we set ai = |vi|, b−1
i = (i+ 1)3(i+ p+ 1)j(p− i+ 1)j and847

c−1
i = (i+ 1)(i+ p+ 1)j(p− i+ 1)j for i = 0, . . . , p/2, and let ai = 0, bi = 0, ci = 1848

for i > p/2. It remains to show that A does not grow with p.849

We note that850

n∑
i=0

c−1
i ≤ p

2j
n∑
i=0

(i+ 1) ≈ n2p2j .851

852

Furthermore, the supremum can be reduced to over the interval n ∈ [0, p/2] due to853

the padding of zeros, hence854

A2 ≈ sup
n∈[0,p/2]

n2p2j

p/2∑
i=n

1

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j
855

≤ sup
n∈[0,p/2]

n2p2j

∫ p/2

n

1

(x+ 1)3(p− p/2 + 1)jpj
dx856

≈ sup
n∈[0,p/2]

n2

(
1

2(n+ 1)2
− 2

(p+ 2)2

)
<∞.857

858

For (4.25), we first transform the sum such that the index starts at 0 by mapping859

the indices i→ p− i, k → p− k860

p/2−1∑
i=0

(
−
∑i−1
k=0 vp−k

)2

(p− i+ 1)3(2p− i+ 1)j(i+ 1)j
≤ C

p/2−1∑
i=0

v2
p−i

(p− i+ 1)(2p− i+ 1)j(i+ 1)j
.861

862

Our result follows if we set ai = |vp−i|, b−1
i = (p− i+ 1)3(2p− i+ 1)j(i+ 1)j , c−1

i =863

(p− i+ 1)(2p− i+ 1)j(i+ 1)j for i = 0, . . . , p/2− 1, and let ai = 0, bi = 0, ci = 1 for864

i ≥ p/2. It remains to show that A does with not grow with p.865
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Proceeding similarly as before, note that
∑n
i=0 c

−1
i ≤ (2p)j+1

∑n
i=0(i + 1)j ≈866

pj+1nj+1. The supremum can be reduced to over the interval n ∈ [0, p/2 − 1] as867

before. Calculating, we have868

A2 ≈ sup
n∈[0,p/2−1]

nj+1pj+1

p/2−1∑
i=n

1

(p− i+ 1)3(2p− i+ 1)j(i+ 1)j
869

≤ sup
n∈[0,p/2−1]

nj+1p

∫ p/2

n

1

(p− p/2 + 1)3(x+ 1)j
dx870

≈ sup
n∈[0,p/2−1]

nj+1

p2

 2(n+1)(p+2)j−2j(p+2)(n+1)j

2(j−1)(n+1)j(p+2)j j > 1

log
(
p

2n

)
j = 1

871

<∞.872873

The case j = 1 corresponds to Lemma 6.5 of [4] in which it was stated (but not proved874

explicitly) that the constant C(1) is independent of p. Lemma 4.10 deals with the875

general case j ∈ N and in addition proves explicitly that C(j) is independent of p.876

The following Hardy inequality is required for the face extension inequalities:877

Corollary 4.11. Let {vi}p−ki=0 ∈ R where k is an integer 1 ≤ k ≤ p, and Si =878 ∑i
j=0(−1)jvj, then there exists a constant C independent of p, k such that879

p−k∑
i=0

S2
i

(i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i)
≤ C

p−k∑
i=0

v2
i

(i+ k)(p− k − i+ 1)(p+ k + i)
880
881

Proof. Since the proof technique is the same as Lemma 4.10, we will only tersely882

discuss the details below.883

As before, split the inequality into two, similar to (4.24) and (4.25). For the884

first sum, we set ai = |vi|, b−1
i = (i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i) and c−1

i =885

(i+ k)(p− k − i+ 1)(p+ k + i) for i = 0, . . . , p−k2 . Then,
∑n
i=0 c

−1
i ≤ (p + k)(p −886

k)
∑n
i=0(i + k) ≈ (p + k)(p − k)(n2 + kn) and the following calculation gives that A887

is bounded:888

A2 ≈ sup
n∈[0, p−k2 ]

(p+ k)(p− k)(n2 + kn)

p−k
2∑
i=n

1

(i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i)
889

≤ sup
n∈[0, p−k2 ]

(n2 + kn)

∫ (p−k)/2

n

1

(x+ 1)2(x+ k)
dx890

≤ sup
n∈[0, p−k2 ]

n2

∫ p−k
2

n

1

(x+ 1)3
dx+ kn

∫ p−k
2

n

1

(x+ 1)2(x+ k)
dx <∞.891

892

For the second sum, first transform the sum to start the index 0 again. Next, set893

ai = |vp−k−i|, b−1
i = (p− k − i+ 1)2(p− i)(2p− i)(i+ 1), c−1

i = (p− i)(2p− i)(i+ 1)894

for i = 0, . . . , p−k2 − 1. Calculating, we have
∑n
i=0 c

−1
i ≤ p2

∑n
i=0(i + 1) ≈ p2n2 and895

This manuscript is for review purposes only.



30 M. AINSWORTH, AND S. JIANG

thus896

A2 ≈ sup
n∈[0, p−k2 −1]

p2n2

p−k
2 −1∑
i=n

1

(p− k − i+ 1)2(p− i)(2p− i)(i+ 1)
897

≤ sup
n∈[0, p−k2 −1]

pn2

∫ p−k
2

n

1

(p− k − (p− k)/2 + 1)2(p− (p− k)/2)(x+ 1)
dx898

≈ sup
n∈[0, p−k2 −1]

pn2

(p− k)2(p+ k)
log

(
p− k

2n

)
<∞.899

900
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